Compositional, Structural, and Kinetic Aspects of Lipid Digestion and Bioavailability: In Vitro, In Vivo, and Modeling Approaches.

IF 10.6 1区 农林科学 Q1 FOOD SCIENCE & TECHNOLOGY Annual review of food science and technology Pub Date : 2022-03-25 Epub Date: 2022-01-06 DOI:10.1146/annurev-food-052720-093515
Sébastien Marze
{"title":"Compositional, Structural, and Kinetic Aspects of Lipid Digestion and Bioavailability: In Vitro, In Vivo, and Modeling Approaches.","authors":"Sébastien Marze","doi":"10.1146/annurev-food-052720-093515","DOIUrl":null,"url":null,"abstract":"<p><p>Lipid digestion and bioavailability are usually investigated separately, using different approaches (in vitro, modeling, in vivo). However, a few inclusive studies show that their kinetics are closely linked. Lipid bioavailability kinetics is likely involved in the development and evolution of several diseases, so lipid digestion kinetics could be involved as well and can be modulated by food design or combination. To illustrate this possibility, the compositional and structural aspects of lipid digestion kinetics, as investigated using in vitro and modeling approaches, are presented first. Then, in vivo and mixed approaches enabling the study of both kinetics are reviewed and discussed. Finally, disparate modeling approaches are introduced, and a unifying modeling scheme is proposed, opening new perspectives for understanding the role and interactions of various factors (chemical, physical, and biological) involved in lipid metabolism.</p>","PeriodicalId":8187,"journal":{"name":"Annual review of food science and technology","volume":"13 ","pages":"263-286"},"PeriodicalIF":10.6000,"publicationDate":"2022-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual review of food science and technology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1146/annurev-food-052720-093515","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/1/6 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 2

Abstract

Lipid digestion and bioavailability are usually investigated separately, using different approaches (in vitro, modeling, in vivo). However, a few inclusive studies show that their kinetics are closely linked. Lipid bioavailability kinetics is likely involved in the development and evolution of several diseases, so lipid digestion kinetics could be involved as well and can be modulated by food design or combination. To illustrate this possibility, the compositional and structural aspects of lipid digestion kinetics, as investigated using in vitro and modeling approaches, are presented first. Then, in vivo and mixed approaches enabling the study of both kinetics are reviewed and discussed. Finally, disparate modeling approaches are introduced, and a unifying modeling scheme is proposed, opening new perspectives for understanding the role and interactions of various factors (chemical, physical, and biological) involved in lipid metabolism.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
脂质消化和生物利用度的组成、结构和动力学方面:体外、体内和建模方法。
脂质消化和生物利用度通常分别研究,使用不同的方法(体外、建模、体内)。然而,一些包容性的研究表明,它们的动力学是密切相关的。脂质生物利用度动力学可能参与多种疾病的发生和进化,因此脂质消化动力学也可能参与其中,并且可以通过食品设计或组合来调节。为了说明这种可能性,首先介绍了脂质消化动力学的组成和结构方面,如使用体外和建模方法进行研究。然后,在体内和混合的方法能够研究这两个动力学进行了回顾和讨论。最后,介绍了不同的建模方法,并提出了一个统一的建模方案,为理解参与脂质代谢的各种因素(化学、物理和生物)的作用和相互作用开辟了新的视角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
22.40
自引率
0.80%
发文量
20
审稿时长
>12 weeks
期刊介绍: Since 2010, the Annual Review of Food Science and Technology has been a key source for current developments in the multidisciplinary field. The covered topics span food microbiology, food-borne pathogens, and fermentation; food engineering, chemistry, biochemistry, rheology, and sensory properties; novel ingredients and nutrigenomics; emerging technologies in food processing and preservation; and applications of biotechnology and nanomaterials in food systems.
期刊最新文献
From Processed Foods to Ultraprocessed Foods: Evolution of an Industry Model and Impact on Dietary Quality, Health, and Society. Fabrication, Functional Properties, and Potential Applications of Mixed Gellan-Polysaccharide Systems: A Review. Unleashing the Potential of Digitalization in the Agri-Food Chain for Integrated Food Systems. Next-Generation Plant-Based Foods: Challenges and Opportunities. Berries as Foods: Processing, Products, and Health Implications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1