Javier Esparza, Stefan Jaax, Mikhail Raskin, Chana Weil-Kennedy
{"title":"The complexity of verifying population protocols.","authors":"Javier Esparza, Stefan Jaax, Mikhail Raskin, Chana Weil-Kennedy","doi":"10.1007/s00446-021-00390-x","DOIUrl":null,"url":null,"abstract":"<p><p>Population protocols (Angluin et al. in PODC, 2004) are a model of distributed computation in which indistinguishable, finite-state agents interact in pairs to decide if their initial configuration, i.e., the initial number of agents in each state, satisfies a given property. In a seminal paper Angluin et al. classified population protocols according to their communication mechanism, and conducted an exhaustive study of the expressive power of each class, that is, of the properties they can decide (Angluin et al. in Distrib Comput 20(4):279-304, 2007). In this paper we study the correctness problem for population protocols, i.e., whether a given protocol decides a given property. A previous paper (Esparza et al. in Acta Inform 54(2):191-215, 2017) has shown that the problem is decidable for the main population protocol model, but at least as hard as the reachability problem for Petri nets, which has recently been proved to have non-elementary complexity. Motivated by this result, we study the computational complexity of the correctness problem for all other classes introduced by Angluin et al., some of which are less powerful than the main model. Our main results show that for the class of observation models the complexity of the problem is much lower, ranging from <math><msubsup><mi>Π</mi> <mn>2</mn> <mi>p</mi></msubsup> </math> to PSPACE.</p>","PeriodicalId":50569,"journal":{"name":"Distributed Computing","volume":"34 2","pages":"133-177"},"PeriodicalIF":1.3000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8550233/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Distributed Computing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s00446-021-00390-x","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/3/24 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Population protocols (Angluin et al. in PODC, 2004) are a model of distributed computation in which indistinguishable, finite-state agents interact in pairs to decide if their initial configuration, i.e., the initial number of agents in each state, satisfies a given property. In a seminal paper Angluin et al. classified population protocols according to their communication mechanism, and conducted an exhaustive study of the expressive power of each class, that is, of the properties they can decide (Angluin et al. in Distrib Comput 20(4):279-304, 2007). In this paper we study the correctness problem for population protocols, i.e., whether a given protocol decides a given property. A previous paper (Esparza et al. in Acta Inform 54(2):191-215, 2017) has shown that the problem is decidable for the main population protocol model, but at least as hard as the reachability problem for Petri nets, which has recently been proved to have non-elementary complexity. Motivated by this result, we study the computational complexity of the correctness problem for all other classes introduced by Angluin et al., some of which are less powerful than the main model. Our main results show that for the class of observation models the complexity of the problem is much lower, ranging from to PSPACE.
期刊介绍:
The international journal Distributed Computing provides a forum for original and significant contributions to the theory, design, specification and implementation of distributed systems.
Topics covered by the journal include but are not limited to:
design and analysis of distributed algorithms;
multiprocessor and multi-core architectures and algorithms;
synchronization protocols and concurrent programming;
distributed operating systems and middleware;
fault-tolerance, reliability and availability;
architectures and protocols for communication networks and peer-to-peer systems;
security in distributed computing, cryptographic protocols;
mobile, sensor, and ad hoc networks;
internet applications;
concurrency theory;
specification, semantics, verification, and testing of distributed systems.
In general, only original papers will be considered. By virtue of submitting a manuscript to the journal, the authors attest that it has not been published or submitted simultaneously for publication elsewhere. However, papers previously presented in conference proceedings may be submitted in enhanced form. If a paper has appeared previously, in any form, the authors must clearly indicate this and provide an account of the differences between the previously appeared form and the submission.