{"title":"RegVar: Tissue-specific Prioritization of Non-coding Regulatory Variants","authors":"Hao Lu, Luyu Ma, Cheng Quan, Lei Li, Yiming Lu, Gangqiao Zhou, Chenggang Zhang","doi":"10.1016/j.gpb.2021.08.011","DOIUrl":null,"url":null,"abstract":"<div><p>Non-coding genomic variants constitute the majority of trait-associated genome variations; however, the identification of functional non-coding variants is still a challenge in human genetics, and a method for systematically assessing the impact of regulatory variants on gene expression and linking these regulatory variants to potential target genes is still lacking. Here, we introduce a deep neural network (DNN)-based computational framework, RegVar, which can accurately predict the tissue-specific impact of non-coding regulatory variants on target genes. We show that by robustly learning the genomic characteristics of massive variant–gene expression associations in a variety of human tissues, RegVar vastly surpasses all current non-coding variant prioritization methods in predicting regulatory variants under different circumstances. The unique features of RegVar make it an excellent framework for assessing the regulatory impact of any variant on its putative target genes in a variety of tissues. RegVar is available as a web server at <span>https://regvar.omic.tech/</span><svg><path></path></svg>.</p></div>","PeriodicalId":12528,"journal":{"name":"Genomics, Proteomics & Bioinformatics","volume":null,"pages":null},"PeriodicalIF":11.5000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genomics, Proteomics & Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1672022921002564","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Non-coding genomic variants constitute the majority of trait-associated genome variations; however, the identification of functional non-coding variants is still a challenge in human genetics, and a method for systematically assessing the impact of regulatory variants on gene expression and linking these regulatory variants to potential target genes is still lacking. Here, we introduce a deep neural network (DNN)-based computational framework, RegVar, which can accurately predict the tissue-specific impact of non-coding regulatory variants on target genes. We show that by robustly learning the genomic characteristics of massive variant–gene expression associations in a variety of human tissues, RegVar vastly surpasses all current non-coding variant prioritization methods in predicting regulatory variants under different circumstances. The unique features of RegVar make it an excellent framework for assessing the regulatory impact of any variant on its putative target genes in a variety of tissues. RegVar is available as a web server at https://regvar.omic.tech/.
期刊介绍:
Genomics, Proteomics and Bioinformatics (GPB) is the official journal of the Beijing Institute of Genomics, Chinese Academy of Sciences / China National Center for Bioinformation and Genetics Society of China. It aims to disseminate new developments in the field of omics and bioinformatics, publish high-quality discoveries quickly, and promote open access and online publication. GPB welcomes submissions in all areas of life science, biology, and biomedicine, with a focus on large data acquisition, analysis, and curation. Manuscripts covering omics and related bioinformatics topics are particularly encouraged. GPB is indexed/abstracted by PubMed/MEDLINE, PubMed Central, Scopus, BIOSIS Previews, Chemical Abstracts, CSCD, among others.