Wavelet invariants for statistically robust multi-reference alignment.

IF 1.4 4区 数学 Q2 MATHEMATICS, APPLIED Information and Inference-A Journal of the Ima Pub Date : 2021-12-01 Epub Date: 2020-08-13 DOI:10.1093/imaiai/iaaa016
Matthew Hirn, Anna Little
{"title":"Wavelet invariants for statistically robust multi-reference alignment.","authors":"Matthew Hirn, Anna Little","doi":"10.1093/imaiai/iaaa016","DOIUrl":null,"url":null,"abstract":"<p><p>We propose a nonlinear, wavelet-based signal representation that is translation invariant and robust to both additive noise and random dilations. Motivated by the multi-reference alignment problem and generalizations thereof, we analyze the statistical properties of this representation given a large number of independent corruptions of a target signal. We prove the nonlinear wavelet-based representation uniquely defines the power spectrum but allows for an unbiasing procedure that cannot be directly applied to the power spectrum. After unbiasing the representation to remove the effects of the additive noise and random dilations, we recover an approximation of the power spectrum by solving a convex optimization problem, and thus reduce to a phase retrieval problem. Extensive numerical experiments demonstrate the statistical robustness of this approximation procedure.</p>","PeriodicalId":45437,"journal":{"name":"Information and Inference-A Journal of the Ima","volume":"10 4","pages":"1287-1351"},"PeriodicalIF":1.4000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8782248/pdf/nihms-1726636.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information and Inference-A Journal of the Ima","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/imaiai/iaaa016","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/8/13 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

We propose a nonlinear, wavelet-based signal representation that is translation invariant and robust to both additive noise and random dilations. Motivated by the multi-reference alignment problem and generalizations thereof, we analyze the statistical properties of this representation given a large number of independent corruptions of a target signal. We prove the nonlinear wavelet-based representation uniquely defines the power spectrum but allows for an unbiasing procedure that cannot be directly applied to the power spectrum. After unbiasing the representation to remove the effects of the additive noise and random dilations, we recover an approximation of the power spectrum by solving a convex optimization problem, and thus reduce to a phase retrieval problem. Extensive numerical experiments demonstrate the statistical robustness of this approximation procedure.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于统计稳健多参考对齐的小波不变式。
我们提出了一种基于小波的非线性信号表示法,这种表示法具有平移不变性,并对加性噪声和随机扩张具有鲁棒性。受多参考对齐问题及其一般化的启发,我们分析了这种表示法在目标信号受到大量独立破坏时的统计特性。我们证明了基于小波的非线性表示法唯一定义了功率谱,但允许采用无法直接应用于功率谱的无偏程序。在对表示进行无偏化以消除加性噪声和随机扩张的影响后,我们通过解决一个凸优化问题来恢复功率谱的近似值,从而简化为一个相位检索问题。大量的数值实验证明了这一近似程序的统计稳健性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.90
自引率
0.00%
发文量
28
期刊最新文献
The Dyson equalizer: adaptive noise stabilization for low-rank signal detection and recovery. Bi-stochastically normalized graph Laplacian: convergence to manifold Laplacian and robustness to outlier noise. Phase transition and higher order analysis of Lq regularization under dependence. On statistical inference with high-dimensional sparse CCA. Black-box tests for algorithmic stability.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1