Qianru Zhang, Zhong Zhang, Shihao Xu, Liangguo Da, Dan Lin, Changlong Jiang
{"title":"Enzyme-free and rapid visual quantitative detection for pesticide residues utilizing portable smartphone integrated paper sensor.","authors":"Qianru Zhang, Zhong Zhang, Shihao Xu, Liangguo Da, Dan Lin, Changlong Jiang","doi":"10.1016/j.jhazmat.2022.129320","DOIUrl":null,"url":null,"abstract":"<p><p>Serious toxicity for organisms from pesticide glyphosate (Gly) residues to the ecosystem and human health has become a consensus. Rapid and selective detection of glyphosate, especially using a simple and portable instrument, is highly desired. In this work, we develop a novel enzyme-free rapid and visual ratiometric fluorescence sensor for selectively quantitative detecting glyphosate by integrating the designed blue carbon nanodots (CDs) and gold nanoclusters (Au NCs). The fluorescence of CDs can be quickly quenched via aggregation-caused quenching (ACQ) within 2 s after introducing glyphosate, resulting from the formation of CDs-Gly-CDs complex aggregation. While the Au NCs serve as the reference signal without any change, therefore leading to obvious and instant ratiometric fluorescence variation from blue to pink to orange. The broad linear range was obtained from 0 to 180 nM with a satisfactory detection limit of 4.19 nM. Furthermore, this approach was successfully applied to detect glyphosate in real samples and a portable smartphone platform integrated paper sensor was developed for in-site visual quantitative glyphosate detection, offering a promising strategy for the construction of enzyme-free trace hazard detection system.</p>","PeriodicalId":361,"journal":{"name":"Journal of Hazardous Materials","volume":"436 ","pages":"129320"},"PeriodicalIF":12.2000,"publicationDate":"2022-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"40","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hazardous Materials","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.jhazmat.2022.129320","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/6/9 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 40
Abstract
Serious toxicity for organisms from pesticide glyphosate (Gly) residues to the ecosystem and human health has become a consensus. Rapid and selective detection of glyphosate, especially using a simple and portable instrument, is highly desired. In this work, we develop a novel enzyme-free rapid and visual ratiometric fluorescence sensor for selectively quantitative detecting glyphosate by integrating the designed blue carbon nanodots (CDs) and gold nanoclusters (Au NCs). The fluorescence of CDs can be quickly quenched via aggregation-caused quenching (ACQ) within 2 s after introducing glyphosate, resulting from the formation of CDs-Gly-CDs complex aggregation. While the Au NCs serve as the reference signal without any change, therefore leading to obvious and instant ratiometric fluorescence variation from blue to pink to orange. The broad linear range was obtained from 0 to 180 nM with a satisfactory detection limit of 4.19 nM. Furthermore, this approach was successfully applied to detect glyphosate in real samples and a portable smartphone platform integrated paper sensor was developed for in-site visual quantitative glyphosate detection, offering a promising strategy for the construction of enzyme-free trace hazard detection system.
期刊介绍:
The Journal of Hazardous Materials serves as a global platform for promoting cutting-edge research in the field of Environmental Science and Engineering. Our publication features a wide range of articles, including full-length research papers, review articles, and perspectives, with the aim of enhancing our understanding of the dangers and risks associated with various materials concerning public health and the environment. It is important to note that the term "environmental contaminants" refers specifically to substances that pose hazardous effects through contamination, while excluding those that do not have such impacts on the environment or human health. Moreover, we emphasize the distinction between wastes and hazardous materials in order to provide further clarity on the scope of the journal. We have a keen interest in exploring specific compounds and microbial agents that have adverse effects on the environment.