Review of research on path planning and control methods of flexible steerable needle puncture robot.

IF 1.5 4区 医学 Q3 SURGERY Computer Assisted Surgery Pub Date : 2022-12-01 DOI:10.1080/24699322.2021.2023647
Kaiyu Wu, Bing Li, Yongde Zhang, Xuesong Dai
{"title":"Review of research on path planning and control methods of flexible steerable needle puncture robot.","authors":"Kaiyu Wu,&nbsp;Bing Li,&nbsp;Yongde Zhang,&nbsp;Xuesong Dai","doi":"10.1080/24699322.2021.2023647","DOIUrl":null,"url":null,"abstract":"<p><p>In the field of minimally invasive interventional therapy, the related research on the soft tissue puncture robot and its technology based on the flexible steerable needle as a research hot topic at present, and it has been developed rapidly in the past ten years. In order to better understand the development status of the flexible steerable needle puncture (FSNP) robot and provide reference for its design and improvement in subsequent research, it is necessary to introduce in two aspects of FSNP robot: the puncture path planning and the control methods. First, this article introduced the concept of the FSNP technology, and the necessity of the application of FSNP soft tissue robot in minimally invasive interventional surgery. Second, this article mainly introduced the principle of FSNP, the path planning of FSNP, the navigation and positioning control of the needle tip of the flexible steerable needle, the control method of FSNP system, and the controllable flexible needle. Finally, combined with the above analysis and introduction, it was pointed out that FSNP soft tissue robot and its related technology would be an important development direction in the field of minimally invasive interventional therapy in the future, and the current existing problems were pointed out. Meanwhile, the development trend of FSNP robot control technology was summarized and prospected.</p>","PeriodicalId":56051,"journal":{"name":"Computer Assisted Surgery","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Assisted Surgery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/24699322.2021.2023647","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"SURGERY","Score":null,"Total":0}
引用次数: 3

Abstract

In the field of minimally invasive interventional therapy, the related research on the soft tissue puncture robot and its technology based on the flexible steerable needle as a research hot topic at present, and it has been developed rapidly in the past ten years. In order to better understand the development status of the flexible steerable needle puncture (FSNP) robot and provide reference for its design and improvement in subsequent research, it is necessary to introduce in two aspects of FSNP robot: the puncture path planning and the control methods. First, this article introduced the concept of the FSNP technology, and the necessity of the application of FSNP soft tissue robot in minimally invasive interventional surgery. Second, this article mainly introduced the principle of FSNP, the path planning of FSNP, the navigation and positioning control of the needle tip of the flexible steerable needle, the control method of FSNP system, and the controllable flexible needle. Finally, combined with the above analysis and introduction, it was pointed out that FSNP soft tissue robot and its related technology would be an important development direction in the field of minimally invasive interventional therapy in the future, and the current existing problems were pointed out. Meanwhile, the development trend of FSNP robot control technology was summarized and prospected.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
柔性可操纵穿刺机器人路径规划与控制方法研究综述。
在微创介入治疗领域,基于柔性可操纵针的软组织穿刺机器人及其技术的相关研究是目前的研究热点,近十年来发展迅速。为了更好地了解柔性可操纵穿刺针(FSNP)机器人的发展现状,为后续的研究设计和改进提供参考,有必要对FSNP机器人的穿刺针路径规划和控制方法两方面进行介绍。本文首先介绍了FSNP技术的概念,以及FSNP软组织机器人在微创介入手术中应用的必要性。其次,本文主要介绍了FSNP的原理、FSNP的路径规划、柔性导向针针尖的导航定位控制、FSNP系统的控制方法、可控柔性针。最后,结合上述分析和介绍,指出FSNP软组织机器人及其相关技术将是未来微创介入治疗领域的重要发展方向,并指出目前存在的问题。同时,对FSNP机器人控制技术的发展趋势进行了总结和展望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Computer Assisted Surgery
Computer Assisted Surgery Medicine-Surgery
CiteScore
2.30
自引率
0.00%
发文量
13
审稿时长
10 weeks
期刊介绍: omputer Assisted Surgery aims to improve patient care by advancing the utilization of computers during treatment; to evaluate the benefits and risks associated with the integration of advanced digital technologies into surgical practice; to disseminate clinical and basic research relevant to stereotactic surgery, minimal access surgery, endoscopy, and surgical robotics; to encourage interdisciplinary collaboration between engineers and physicians in developing new concepts and applications; to educate clinicians about the principles and techniques of computer assisted surgery and therapeutics; and to serve the international scientific community as a medium for the transfer of new information relating to theory, research, and practice in biomedical imaging and the surgical specialties. The scope of Computer Assisted Surgery encompasses all fields within surgery, as well as biomedical imaging and instrumentation, and digital technology employed as an adjunct to imaging in diagnosis, therapeutics, and surgery. Topics featured include frameless as well as conventional stereotactic procedures, surgery guided by intraoperative ultrasound or magnetic resonance imaging, image guided focused irradiation, robotic surgery, and any therapeutic interventions performed with the use of digital imaging technology.
期刊最新文献
Ultrasound-based 3D bone modelling in computer assisted orthopedic surgery - a review and future challenges. Augmented reality technology shortens aneurysm surgery learning curve for residents. Feasibility of proton dosimetry overriding planning CT with daily CBCT elaborated through generative artificial intelligence tools. SwinD-Net: a lightweight segmentation network for laparoscopic liver segmentation. Risk prediction and analysis of gallbladder polyps with deep neural network.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1