Feature extraction via similarity search: application to atom finding and denoising in electron and scanning probe microscopy imaging

Suhas Somnath, Christopher R. Smith, Sergei V. Kalinin, Miaofang Chi, Albina Borisevich, Nicholas Cross, Gerd Duscher, Stephen Jesse
{"title":"Feature extraction via similarity search: application to atom finding and denoising in electron and scanning probe microscopy imaging","authors":"Suhas Somnath,&nbsp;Christopher R. Smith,&nbsp;Sergei V. Kalinin,&nbsp;Miaofang Chi,&nbsp;Albina Borisevich,&nbsp;Nicholas Cross,&nbsp;Gerd Duscher,&nbsp;Stephen Jesse","doi":"10.1186/s40679-018-0052-y","DOIUrl":null,"url":null,"abstract":"<p>We develop an algorithm for feature extraction based on structural similarity and demonstrate its application for atom and pattern finding in high-resolution electron and scanning probe microscopy images. The use of the combined local identifiers formed from an image subset and appended Fourier, or other transform, allows tuning selectivity to specific patterns based on the nature of the recognition task. The proposed algorithm is implemented in Pycroscopy, a community-driven scientific data analysis package, and is accessible through an interactive Jupyter notebook available on GitHub.</p>","PeriodicalId":460,"journal":{"name":"Advanced Structural and Chemical Imaging","volume":"4 1","pages":""},"PeriodicalIF":3.5600,"publicationDate":"2018-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s40679-018-0052-y","citationCount":"35","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Structural and Chemical Imaging","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1186/s40679-018-0052-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 35

Abstract

We develop an algorithm for feature extraction based on structural similarity and demonstrate its application for atom and pattern finding in high-resolution electron and scanning probe microscopy images. The use of the combined local identifiers formed from an image subset and appended Fourier, or other transform, allows tuning selectivity to specific patterns based on the nature of the recognition task. The proposed algorithm is implemented in Pycroscopy, a community-driven scientific data analysis package, and is accessible through an interactive Jupyter notebook available on GitHub.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于相似性搜索的特征提取:在电子和扫描探针显微镜成像中的原子发现和去噪应用
我们开发了一种基于结构相似性的特征提取算法,并演示了其在高分辨率电子和扫描探针显微镜图像中原子和模式发现的应用。使用由图像子集和附加傅立叶或其他变换组成的组合本地标识符,可以根据识别任务的性质对特定模式进行选择性调优。提出的算法在Pycroscopy中实现,Pycroscopy是一个社区驱动的科学数据分析包,可以通过GitHub上的交互式Jupyter笔记本访问。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Structural and Chemical Imaging
Advanced Structural and Chemical Imaging Medicine-Radiology, Nuclear Medicine and Imaging
自引率
0.00%
发文量
0
期刊最新文献
Detection of defects in atomic-resolution images of materials using cycle analysis Imaging of polymer:fullerene bulk-heterojunctions in a scanning electron microscope: methodology aspects and nanomorphology by correlative SEM and STEM mpfit: a robust method for fitting atomic resolution images with multiple Gaussian peaks Investigation of hole-free phase plate performance in transmission electron microscopy under different operation conditions by experiments and simulations Optimal principal component analysis of STEM XEDS spectrum images
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1