{"title":"Model-based Deep Learning Reconstruction Using a Folded Image Training Strategy for Abdominal 3D T1-weighted Imaging.","authors":"Satoshi Funayama, Utaroh Motosugi, Shintaro Ichikawa, Hiroyuki Morisaka, Yoshie Omiya, Hiroshi Onishi","doi":"10.2463/mrms.mp.2021-0103","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>To evaluate the feasibility of folded image training strategy (FITS) and the quality of images reconstructed using the improved model-based deep learning (iMoDL) network trained with FITS (FITS-iMoDL) for abdominal MR imaging.</p><p><strong>Methods: </strong>This retrospective study included abdominal 3D T1-weighted images of 122 patients. In the experimental analyses, peak SNR (PSNR) and structure similarity index (SSIM) of images reconstructed with FITS-iMoDL were compared with those with the following reconstruction methods: conventional model-based deep learning (conv-MoDL), MoDL trained with FITS (FITS-MoDL), total variation regularized compressed sensing (CS), and parallel imaging (CG-SENSE). In the clinical analysis, SNR and image contrast were measured on the reference, FITS-iMoDL, and CS images. Three radiologists evaluated the image quality using a 5-point scale to determine the mean opinion score (MOS).</p><p><strong>Results: </strong>The PSNR of FITS-iMoDL was significantly higher than that of FITS-MoDL, conv-MoDL, CS, and CG-SENSE (P < 0.001). The SSIM of FITS-iMoDL was significantly higher than those of the others (P < 0.001), except for FITS-MoDL (P = 0.056). In the clinical analysis, the SNR of FITS-iMoDL was significantly higher than that of the reference and CS (P < 0.0001). Image contrast was equivalent within an equivalence margin of 10% among these three image sets (P < 0.0001). MOS was significantly improved in FITS-iMoDL (P < 0.001) compared with CS images in terms of liver edge and vessels conspicuity, lesion depiction, artifacts, blurring, and overall image quality.</p><p><strong>Conclusion: </strong>The proposed method, FITS-iMoDL, allowed a deeper MoDL reconstruction network without increasing memory consumption and improved image quality on abdominal 3D T1-weighted imaging compared with CS images.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":" ","pages":"515-526"},"PeriodicalIF":4.7000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/c7/90/mrms-22-515.PMC10552667.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2463/mrms.mp.2021-0103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/11/8 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: To evaluate the feasibility of folded image training strategy (FITS) and the quality of images reconstructed using the improved model-based deep learning (iMoDL) network trained with FITS (FITS-iMoDL) for abdominal MR imaging.
Methods: This retrospective study included abdominal 3D T1-weighted images of 122 patients. In the experimental analyses, peak SNR (PSNR) and structure similarity index (SSIM) of images reconstructed with FITS-iMoDL were compared with those with the following reconstruction methods: conventional model-based deep learning (conv-MoDL), MoDL trained with FITS (FITS-MoDL), total variation regularized compressed sensing (CS), and parallel imaging (CG-SENSE). In the clinical analysis, SNR and image contrast were measured on the reference, FITS-iMoDL, and CS images. Three radiologists evaluated the image quality using a 5-point scale to determine the mean opinion score (MOS).
Results: The PSNR of FITS-iMoDL was significantly higher than that of FITS-MoDL, conv-MoDL, CS, and CG-SENSE (P < 0.001). The SSIM of FITS-iMoDL was significantly higher than those of the others (P < 0.001), except for FITS-MoDL (P = 0.056). In the clinical analysis, the SNR of FITS-iMoDL was significantly higher than that of the reference and CS (P < 0.0001). Image contrast was equivalent within an equivalence margin of 10% among these three image sets (P < 0.0001). MOS was significantly improved in FITS-iMoDL (P < 0.001) compared with CS images in terms of liver edge and vessels conspicuity, lesion depiction, artifacts, blurring, and overall image quality.
Conclusion: The proposed method, FITS-iMoDL, allowed a deeper MoDL reconstruction network without increasing memory consumption and improved image quality on abdominal 3D T1-weighted imaging compared with CS images.
期刊介绍:
ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications.
The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.