{"title":"N<sup>6</sup>-methyladenosine and Its Implications in Viruses.","authors":"Yafen Wang, Xiang Zhou","doi":"10.1016/j.gpb.2022.04.009","DOIUrl":null,"url":null,"abstract":"<p><p>N<sup>6</sup>-methyladenine (m<sup>6</sup>A) is the most abundant RNA modification in mammalian messenger RNAs (mRNAs), which participates in and regulates many important biological activities, such as tissue development and stem cell differentiation. Due to an improved understanding of m<sup>6</sup>A, researchers have discovered that the biological function of m<sup>6</sup>A can be linked to many stages of mRNA metabolism and that m<sup>6</sup>A can regulate a variety of complex biological processes. In addition to its location on mammalian mRNAs, m<sup>6</sup>A has been identified on viral transcripts. m<sup>6</sup>A also plays important roles in the life cycle of many viruses and in viral replication in host cells. In this review, we briefly introduce the detection methods of m<sup>6</sup>A, the m<sup>6</sup>A-related proteins, and the functions of m<sup>6</sup>A. We also summarize the effects of m<sup>6</sup>A-related proteins on viral replication and infection. We hope that this review provides researchers with some insights for elucidating the complex mechanisms of the epitranscriptome related to viruses, and provides information for further study of the mechanisms of other modified nucleobases acting on processes such as viral replication. We also anticipate that this review can stimulate collaborative research from different fields, such as chemistry, biology, and medicine, and promote the development of antiviral drugs and vaccines.</p>","PeriodicalId":12528,"journal":{"name":"Genomics, Proteomics & Bioinformatics","volume":null,"pages":null},"PeriodicalIF":11.5000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10787122/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genomics, Proteomics & Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.gpb.2022.04.009","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/7/11 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
N6-methyladenine (m6A) is the most abundant RNA modification in mammalian messenger RNAs (mRNAs), which participates in and regulates many important biological activities, such as tissue development and stem cell differentiation. Due to an improved understanding of m6A, researchers have discovered that the biological function of m6A can be linked to many stages of mRNA metabolism and that m6A can regulate a variety of complex biological processes. In addition to its location on mammalian mRNAs, m6A has been identified on viral transcripts. m6A also plays important roles in the life cycle of many viruses and in viral replication in host cells. In this review, we briefly introduce the detection methods of m6A, the m6A-related proteins, and the functions of m6A. We also summarize the effects of m6A-related proteins on viral replication and infection. We hope that this review provides researchers with some insights for elucidating the complex mechanisms of the epitranscriptome related to viruses, and provides information for further study of the mechanisms of other modified nucleobases acting on processes such as viral replication. We also anticipate that this review can stimulate collaborative research from different fields, such as chemistry, biology, and medicine, and promote the development of antiviral drugs and vaccines.
期刊介绍:
Genomics, Proteomics and Bioinformatics (GPB) is the official journal of the Beijing Institute of Genomics, Chinese Academy of Sciences / China National Center for Bioinformation and Genetics Society of China. It aims to disseminate new developments in the field of omics and bioinformatics, publish high-quality discoveries quickly, and promote open access and online publication. GPB welcomes submissions in all areas of life science, biology, and biomedicine, with a focus on large data acquisition, analysis, and curation. Manuscripts covering omics and related bioinformatics topics are particularly encouraged. GPB is indexed/abstracted by PubMed/MEDLINE, PubMed Central, Scopus, BIOSIS Previews, Chemical Abstracts, CSCD, among others.