Observer performance evaluation of the feasibility of a deep learning model to detect cardiomegaly on chest radiographs.

IF 0.9 Q4 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Acta radiologica open Pub Date : 2022-07-21 eCollection Date: 2022-07-01 DOI:10.1177/20584601221107345
Pranav Ajmera, Amit Kharat, Tanveer Gupte, Richa Pant, Viraj Kulkarni, Vinay Duddalwar, Purnachandra Lamghare
{"title":"Observer performance evaluation of the feasibility of a deep learning model to detect cardiomegaly on chest radiographs.","authors":"Pranav Ajmera,&nbsp;Amit Kharat,&nbsp;Tanveer Gupte,&nbsp;Richa Pant,&nbsp;Viraj Kulkarni,&nbsp;Vinay Duddalwar,&nbsp;Purnachandra Lamghare","doi":"10.1177/20584601221107345","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Cardiothoracic ratio (CTR) is the ratio of the diameter of the heart to the diameter of the thorax. An abnormal CTR (>0.55) is often an indicator of an underlying pathological condition. The accurate prediction of an abnormal CTR chest X-rays (CXRs) aids in the early diagnosis of clinical conditions.</p><p><strong>Purpose: </strong>We propose a deep learning (DL)-based model for automatic CTR calculation to assist radiologists with rapid diagnosis of cardiomegaly and thus optimise the radiology flow.</p><p><strong>Material and methods: </strong>The study population included 1012 posteroanterior CXRs from a single institution. The Attention U-Net DL architecture was used for the automatic calculation of CTR. An observer performance test was conducted to assess the radiologist's performance in diagnosing cardiomegaly with and without artificial intelligence assistance.</p><p><strong>Results: </strong>U-Net model exhibited a sensitivity of 0.80 [95% CI: 0.75, 0.85], specificity >99%, precision of 0.99 [95% CI: 0.98, 1], and a F1 score of 0.88 [95% CI: 0.85, 0.91]. Furthermore, the sensitivity of the reviewing radiologist in identifying cardiomegaly increased from 40.50% to 88.4% when aided by the AI-generated CTR.</p><p><strong>Conclusion: </strong>Our segmentation-based AI model demonstrated high specificity (>99%) and sensitivity (80%) for CTR calculation. The performance of the radiologist on the observer performance test improved significantly with provision of AI assistance. A DL-based segmentation model for rapid quantification of CTR can therefore have significant potential to be used in clinical workflows by reducing radiologists' burden and alerting to an abnormal enlarged heart early on.</p>","PeriodicalId":72063,"journal":{"name":"Acta radiologica open","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2022-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/40/b4/10.1177_20584601221107345.PMC9309780.pdf","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta radiologica open","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/20584601221107345","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/7/1 0:00:00","PubModel":"eCollection","JCR":"Q4","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 6

Abstract

Background: Cardiothoracic ratio (CTR) is the ratio of the diameter of the heart to the diameter of the thorax. An abnormal CTR (>0.55) is often an indicator of an underlying pathological condition. The accurate prediction of an abnormal CTR chest X-rays (CXRs) aids in the early diagnosis of clinical conditions.

Purpose: We propose a deep learning (DL)-based model for automatic CTR calculation to assist radiologists with rapid diagnosis of cardiomegaly and thus optimise the radiology flow.

Material and methods: The study population included 1012 posteroanterior CXRs from a single institution. The Attention U-Net DL architecture was used for the automatic calculation of CTR. An observer performance test was conducted to assess the radiologist's performance in diagnosing cardiomegaly with and without artificial intelligence assistance.

Results: U-Net model exhibited a sensitivity of 0.80 [95% CI: 0.75, 0.85], specificity >99%, precision of 0.99 [95% CI: 0.98, 1], and a F1 score of 0.88 [95% CI: 0.85, 0.91]. Furthermore, the sensitivity of the reviewing radiologist in identifying cardiomegaly increased from 40.50% to 88.4% when aided by the AI-generated CTR.

Conclusion: Our segmentation-based AI model demonstrated high specificity (>99%) and sensitivity (80%) for CTR calculation. The performance of the radiologist on the observer performance test improved significantly with provision of AI assistance. A DL-based segmentation model for rapid quantification of CTR can therefore have significant potential to be used in clinical workflows by reducing radiologists' burden and alerting to an abnormal enlarged heart early on.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在胸片上检测心脏肿大的深度学习模型可行性的观察者性能评估。
背景:心胸比(CTR)是指心脏直径与胸腔直径之比。异常的CTR(>0.55)通常是潜在病理状况的一个指标。准确预测异常CTR胸片(CXRs)有助于临床疾病的早期诊断。目的:我们提出了一种基于深度学习(DL)的自动CTR计算模型,以帮助放射科医生快速诊断心脏肥大,从而优化放射学流程。材料和方法:研究人群包括来自单一机构的1012位后前位cxr。CTR的自动计算采用了Attention U-Net DL架构。进行了观察者性能测试,以评估放射科医生在有和没有人工智能辅助的情况下诊断心脏肿大的表现。结果:U-Net模型灵敏度为0.80 [95% CI: 0.75, 0.85],特异性>99%,精密度为0.99 [95% CI: 0.98, 1], F1评分为0.88 [95% CI: 0.85, 0.91]。此外,在人工智能生成的CTR的帮助下,检查放射科医生识别心脏肿大的敏感性从40.50%增加到88.4%。结论:基于分段的人工智能模型对CTR计算具有高特异性(>99%)和敏感性(80%)。在人工智能辅助下,放射科医生在观察者性能测试中的表现显著提高。因此,基于dl的快速量化CTR的分割模型在临床工作流程中具有很大的潜力,可以减轻放射科医生的负担,并在早期提醒心脏异常增大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
12 weeks
期刊最新文献
Differential diagnosis between low-risk and high-risk thymoma: Comparison of diagnostic performance of radiologists with and without deep learning model. Computed tomography patterns and clinical outcomes of radiation pneumonitis in non-small-cell lung cancer patients. Cranial nerves bridging the middle ear and cerebellum causing cerebellar peduncle abscess: A case report. Invasive trigeminal ganglioneuroma: A case report and review of the literature. A case of primary osteosarcoma in the occipital bone: A relatively common tumor in an uncommon location.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1