Dynamic Memory Management in Massively Parallel Systems: A Case on GPUs.

Minh Pham, Hao Li, Yongke Yuan, Chengcheng Mou, Kandethody Ramachandran, Zichen Xu, Yicheng Tu
{"title":"Dynamic Memory Management in Massively Parallel Systems: A Case on GPUs.","authors":"Minh Pham, Hao Li, Yongke Yuan, Chengcheng Mou, Kandethody Ramachandran, Zichen Xu, Yicheng Tu","doi":"10.1145/3524059.3532387","DOIUrl":null,"url":null,"abstract":"<p><p>Due to the high level of parallelism, there are unique challenges in developing system software on massively parallel hardware such as GPUs. One such challenge is designing a dynamic memory allocator whose task is to allocate memory chunks to requesting threads at runtime. State-of-the-art GPU memory allocators maintain a global data structure holding metadata to facilitate allocation/deallocation. However, the centralized data structure can easily become a bottleneck in a massively parallel system. In this paper, we present a novel approach for designing dynamic memory allocation without a centralized data structure. The core idea is to let threads follow a random search procedure to locate free pages. Then we further extend to more advanced designs and algorithms that can achieve an order of magnitude improvement over the basic idea. We present mathematical proofs to demonstrate that (1) the basic random search design achieves asymptotically lower latency than the traditional queue-based design and (2) the advanced designs achieve significant improvement over the basic idea. Extensive experiments show consistency to our mathematical models and demonstrate that our solutions can achieve up to two orders of magnitude improvement in latency over the best-known existing solutions.</p>","PeriodicalId":73273,"journal":{"name":"ICS ... : proceedings of the ... ACM International Conference on Supercomputing. International Conference on Supercomputing","volume":"2022 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9357265/pdf/nihms-1823919.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICS ... : proceedings of the ... ACM International Conference on Supercomputing. International Conference on Supercomputing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3524059.3532387","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/6/28 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Due to the high level of parallelism, there are unique challenges in developing system software on massively parallel hardware such as GPUs. One such challenge is designing a dynamic memory allocator whose task is to allocate memory chunks to requesting threads at runtime. State-of-the-art GPU memory allocators maintain a global data structure holding metadata to facilitate allocation/deallocation. However, the centralized data structure can easily become a bottleneck in a massively parallel system. In this paper, we present a novel approach for designing dynamic memory allocation without a centralized data structure. The core idea is to let threads follow a random search procedure to locate free pages. Then we further extend to more advanced designs and algorithms that can achieve an order of magnitude improvement over the basic idea. We present mathematical proofs to demonstrate that (1) the basic random search design achieves asymptotically lower latency than the traditional queue-based design and (2) the advanced designs achieve significant improvement over the basic idea. Extensive experiments show consistency to our mathematical models and demonstrate that our solutions can achieve up to two orders of magnitude improvement in latency over the best-known existing solutions.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
大规模并行系统中的动态内存管理:GPU 案例
由于高度并行性,在 GPU 等大规模并行硬件上开发系统软件面临着独特的挑战。其中一个挑战就是设计一个动态内存分配器,其任务是在运行时为请求线程分配内存块。最先进的 GPU 内存分配器会维护一个全局数据结构,其中包含元数据,以方便分配/重新分配。然而,集中式数据结构很容易成为大规模并行系统的瓶颈。在本文中,我们提出了一种无需集中式数据结构的动态内存分配设计新方法。其核心思想是让线程按照随机搜索程序查找空闲页面。然后,我们进一步扩展到更先进的设计和算法,这些设计和算法可以在基本思想的基础上实现数量级的改进。我们提出了数学证明,以证明:(1) 与传统的基于队列的设计相比,基本随机搜索设计实现了渐近式的低延迟;(2) 与基本思想相比,高级设计实现了显著的改进。广泛的实验表明,我们的数学模型是一致的,并证明我们的解决方案能比最知名的现有解决方案在延迟方面实现两个数量级的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Accelerating BWA-MEM Read Mapping on GPUs. Dynamic Memory Management in Massively Parallel Systems: A Case on GPUs. Priority Algorithms with Advice for Disjoint Path Allocation Problems From Data of Internet of Things to Domain Knowledge: A Case Study of Exploration in Smart Agriculture On Two Variants of Induced Matchings
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1