首页 > 最新文献

ICS ... : proceedings of the ... ACM International Conference on Supercomputing. International Conference on Supercomputing最新文献

英文 中文
Accelerating BWA-MEM Read Mapping on GPUs. 加速gpu上的BWA-MEM读映射。
Minh Pham, Yicheng Tu, Xiaoyi Lv

Advancements in Next-Generation Sequencing (NGS) have significantly reduced the cost of generating DNA sequence data and increased the speed of data production. However, such high-throughput data production has increased the need for efficient data analysis programs. One of the most computationally demanding steps in analyzing sequencing data is mapping short reads produced by NGS to a reference DNA sequence, such as a human genome. The mapping program BWA-MEM and its newer version BWA-MEM2, optimized for CPUs, are some of the most popular choices for this task. In this study, we discuss the implementation of BWA-MEM on GPUs. This is a challenging task because many algorithms and data structures in BWA-MEM do not execute efficiently on the GPU architecture. This paper identifies major challenges in developing efficient GPU code on all major stages of the BWA-MEM program, including seeding, seed chaining, Smith-Waterman alignment, memory management, and I/O handling. We conduct comparison experiments against BWA-MEM and BWA-MEM2 running on a 64-thread CPU. The results show that our implementation achieved up to 3.2x speedup over BWA-MEM2 and up to 5.8x over BWA-MEM when using an NVIDIA A40. Using an NVIDIA A6000 and an NVIDIA A100, we achieved a wall-time speedup of up to 3.4x/3.8x over BWA-MEM2 and up to 6.1x/6.8x over BWA-MEM, respectively. In stage-wise comparison, the A40/A6000/A100 GPUs respectively achieved up to 3.7/3.8/4x, 2/2.3/2.5x, and 3.1/5/7.9x speedup on the three major stages of BWA-MEM: seeding and seed chaining, Smith-Waterman, and making SAM output. To the best of our knowledge, this is the first study that attempts to implement the entire BWA-MEM program on GPUs.

新一代测序技术(NGS)的进步大大降低了生成DNA序列数据的成本,提高了数据生成的速度。然而,这种高吞吐量的数据生产增加了对高效数据分析程序的需求。在分析测序数据中,最需要计算量的步骤之一是将NGS产生的短读段映射到参考DNA序列,如人类基因组。映射程序BWA-MEM及其更新版本的BWA-MEM2针对cpu进行了优化,是完成此任务的一些最受欢迎的选择。在本研究中,我们讨论了BWA-MEM在gpu上的实现。这是一项具有挑战性的任务,因为BWA-MEM中的许多算法和数据结构在GPU架构上不能有效地执行。本文确定了在BWA-MEM程序的所有主要阶段开发高效GPU代码的主要挑战,包括播种,种子链,Smith-Waterman对齐,内存管理和I/O处理。我们对运行在64线程CPU上的bwa - memm和BWA-MEM2进行了对比实验。结果表明,当使用NVIDIA A40时,我们的实现比BWA-MEM2实现了高达3.2倍的加速,比BWA-MEM实现了高达5.8倍的加速。使用NVIDIA A6000和NVIDIA A100,我们分别实现了比BWA-MEM2高3.4倍/3.8倍和比BWA-MEM高6.1倍/6.8倍的全时加速。分阶段比较,A40/A6000/A100 gpu在BWA-MEM的播种和种子链、Smith-Waterman和SAM输出三个主要阶段分别实现了3.7/3.8/4倍、2/2.3/2.5倍和3.1/5/7.9倍的加速。据我们所知,这是第一个试图在gpu上实现整个BWA-MEM程序的研究。
{"title":"Accelerating BWA-MEM Read Mapping on GPUs.","authors":"Minh Pham,&nbsp;Yicheng Tu,&nbsp;Xiaoyi Lv","doi":"10.1145/3577193.3593703","DOIUrl":"https://doi.org/10.1145/3577193.3593703","url":null,"abstract":"<p><p>Advancements in Next-Generation Sequencing (NGS) have significantly reduced the cost of generating DNA sequence data and increased the speed of data production. However, such high-throughput data production has increased the need for efficient data analysis programs. One of the most computationally demanding steps in analyzing sequencing data is mapping short reads produced by NGS to a reference DNA sequence, such as a human genome. The mapping program BWA-MEM and its newer version BWA-MEM2, optimized for CPUs, are some of the most popular choices for this task. In this study, we discuss the implementation of BWA-MEM on GPUs. This is a challenging task because many algorithms and data structures in BWA-MEM do not execute efficiently on the GPU architecture. This paper identifies major challenges in developing efficient GPU code on all major stages of the BWA-MEM program, including seeding, seed chaining, Smith-Waterman alignment, memory management, and I/O handling. We conduct comparison experiments against BWA-MEM and BWA-MEM2 running on a 64-thread CPU. The results show that our implementation achieved up to 3.2x speedup over BWA-MEM2 and up to 5.8x over BWA-MEM when using an NVIDIA A40. Using an NVIDIA A6000 and an NVIDIA A100, we achieved a wall-time speedup of up to 3.4x/3.8x over BWA-MEM2 and up to 6.1x/6.8x over BWA-MEM, respectively. In stage-wise comparison, the A40/A6000/A100 GPUs respectively achieved up to 3.7/3.8/4x, 2/2.3/2.5x, and 3.1/5/7.9x speedup on the three major stages of BWA-MEM: seeding and seed chaining, Smith-Waterman, and making SAM output. To the best of our knowledge, this is the first study that attempts to implement the entire BWA-MEM program on GPUs.</p>","PeriodicalId":73273,"journal":{"name":"ICS ... : proceedings of the ... ACM International Conference on Supercomputing. International Conference on Supercomputing","volume":"2023 ","pages":"155-166"},"PeriodicalIF":0.0,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10425913/pdf/nihms-1917800.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10075809","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dynamic Memory Management in Massively Parallel Systems: A Case on GPUs. 大规模并行系统中的动态内存管理:GPU 案例
Minh Pham, Hao Li, Yongke Yuan, Chengcheng Mou, Kandethody Ramachandran, Zichen Xu, Yicheng Tu

Due to the high level of parallelism, there are unique challenges in developing system software on massively parallel hardware such as GPUs. One such challenge is designing a dynamic memory allocator whose task is to allocate memory chunks to requesting threads at runtime. State-of-the-art GPU memory allocators maintain a global data structure holding metadata to facilitate allocation/deallocation. However, the centralized data structure can easily become a bottleneck in a massively parallel system. In this paper, we present a novel approach for designing dynamic memory allocation without a centralized data structure. The core idea is to let threads follow a random search procedure to locate free pages. Then we further extend to more advanced designs and algorithms that can achieve an order of magnitude improvement over the basic idea. We present mathematical proofs to demonstrate that (1) the basic random search design achieves asymptotically lower latency than the traditional queue-based design and (2) the advanced designs achieve significant improvement over the basic idea. Extensive experiments show consistency to our mathematical models and demonstrate that our solutions can achieve up to two orders of magnitude improvement in latency over the best-known existing solutions.

由于高度并行性,在 GPU 等大规模并行硬件上开发系统软件面临着独特的挑战。其中一个挑战就是设计一个动态内存分配器,其任务是在运行时为请求线程分配内存块。最先进的 GPU 内存分配器会维护一个全局数据结构,其中包含元数据,以方便分配/重新分配。然而,集中式数据结构很容易成为大规模并行系统的瓶颈。在本文中,我们提出了一种无需集中式数据结构的动态内存分配设计新方法。其核心思想是让线程按照随机搜索程序查找空闲页面。然后,我们进一步扩展到更先进的设计和算法,这些设计和算法可以在基本思想的基础上实现数量级的改进。我们提出了数学证明,以证明:(1) 与传统的基于队列的设计相比,基本随机搜索设计实现了渐近式的低延迟;(2) 与基本思想相比,高级设计实现了显著的改进。广泛的实验表明,我们的数学模型是一致的,并证明我们的解决方案能比最知名的现有解决方案在延迟方面实现两个数量级的改进。
{"title":"Dynamic Memory Management in Massively Parallel Systems: A Case on GPUs.","authors":"Minh Pham, Hao Li, Yongke Yuan, Chengcheng Mou, Kandethody Ramachandran, Zichen Xu, Yicheng Tu","doi":"10.1145/3524059.3532387","DOIUrl":"10.1145/3524059.3532387","url":null,"abstract":"<p><p>Due to the high level of parallelism, there are unique challenges in developing system software on massively parallel hardware such as GPUs. One such challenge is designing a dynamic memory allocator whose task is to allocate memory chunks to requesting threads at runtime. State-of-the-art GPU memory allocators maintain a global data structure holding metadata to facilitate allocation/deallocation. However, the centralized data structure can easily become a bottleneck in a massively parallel system. In this paper, we present a novel approach for designing dynamic memory allocation without a centralized data structure. The core idea is to let threads follow a random search procedure to locate free pages. Then we further extend to more advanced designs and algorithms that can achieve an order of magnitude improvement over the basic idea. We present mathematical proofs to demonstrate that (1) the basic random search design achieves asymptotically lower latency than the traditional queue-based design and (2) the advanced designs achieve significant improvement over the basic idea. Extensive experiments show consistency to our mathematical models and demonstrate that our solutions can achieve up to two orders of magnitude improvement in latency over the best-known existing solutions.</p>","PeriodicalId":73273,"journal":{"name":"ICS ... : proceedings of the ... ACM International Conference on Supercomputing. International Conference on Supercomputing","volume":"2022 ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9357265/pdf/nihms-1823919.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40681699","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Priority Algorithms with Advice for Disjoint Path Allocation Problems 不相交路径分配问题的优先级通知算法
Hans-Joachim Böckenhauer, F. Frei, Silvan Horvath
{"title":"Priority Algorithms with Advice for Disjoint Path Allocation Problems","authors":"Hans-Joachim Böckenhauer, F. Frei, Silvan Horvath","doi":"10.1007/978-981-19-9582-8_3","DOIUrl":"https://doi.org/10.1007/978-981-19-9582-8_3","url":null,"abstract":"","PeriodicalId":73273,"journal":{"name":"ICS ... : proceedings of the ... ACM International Conference on Supercomputing. International Conference on Supercomputing","volume":"4 1","pages":"25-36"},"PeriodicalIF":0.0,"publicationDate":"2022-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91168122","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
AHP-Based Assessment of Developing Online Virtual Reality Services with Progressive Web Apps 基于ahp的渐进式Web应用开发在线虚拟现实服务的评估
Sheng-Ming Wang, M. Yaqin, Fu-Hsiang Hsu
{"title":"AHP-Based Assessment of Developing Online Virtual Reality Services with Progressive Web Apps","authors":"Sheng-Ming Wang, M. Yaqin, Fu-Hsiang Hsu","doi":"10.1007/978-981-19-9582-8_49","DOIUrl":"https://doi.org/10.1007/978-981-19-9582-8_49","url":null,"abstract":"","PeriodicalId":73273,"journal":{"name":"ICS ... : proceedings of the ... ACM International Conference on Supercomputing. International Conference on Supercomputing","volume":"41 1","pages":"553-566"},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78713011","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Computation Offloading Algorithm Based on Deep Reinforcement Learning and Multi-Task Dependency for Edge Computing 基于深度强化学习和多任务依赖的边缘计算卸载算法
Tengxiang Lin, Cheng-Kuan Lin, Zhen Chen, Hongju Cheng
{"title":"Computation Offloading Algorithm Based on Deep Reinforcement Learning and Multi-Task Dependency for Edge Computing","authors":"Tengxiang Lin, Cheng-Kuan Lin, Zhen Chen, Hongju Cheng","doi":"10.1007/978-981-19-9582-8_10","DOIUrl":"https://doi.org/10.1007/978-981-19-9582-8_10","url":null,"abstract":"","PeriodicalId":73273,"journal":{"name":"ICS ... : proceedings of the ... ACM International Conference on Supercomputing. International Conference on Supercomputing","volume":"C-20 1","pages":"111-122"},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85068769","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hamiltonian Properties of the Dragonfly Network 蜻蜓网络的哈密顿性质
Su-nong Wu, B. Cheng, Yan Wang, Yuejuan Han, Jianxi Fan
{"title":"Hamiltonian Properties of the Dragonfly Network","authors":"Su-nong Wu, B. Cheng, Yan Wang, Yuejuan Han, Jianxi Fan","doi":"10.1007/978-981-19-9582-8_15","DOIUrl":"https://doi.org/10.1007/978-981-19-9582-8_15","url":null,"abstract":"","PeriodicalId":73273,"journal":{"name":"ICS ... : proceedings of the ... ACM International Conference on Supercomputing. International Conference on Supercomputing","volume":"48 1","pages":"167-179"},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87978371","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Use of Serverless Processing in Web Application Development 无服务器处理在Web应用程序开发中的应用
R. Banaszak, Anna Kobusińska
{"title":"The Use of Serverless Processing in Web Application Development","authors":"R. Banaszak, Anna Kobusińska","doi":"10.1007/978-981-19-9582-8_21","DOIUrl":"https://doi.org/10.1007/978-981-19-9582-8_21","url":null,"abstract":"","PeriodicalId":73273,"journal":{"name":"ICS ... : proceedings of the ... ACM International Conference on Supercomputing. International Conference on Supercomputing","volume":"96 1","pages":"230-242"},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86084050","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Difficulty-Aware Mixup for Replay-based Continual Learning 基于重玩的持续学习的困难意识混淆
Yunhan Ling, Rengbo Yang, Sheng-De Wang
{"title":"Difficulty-Aware Mixup for Replay-based Continual Learning","authors":"Yunhan Ling, Rengbo Yang, Sheng-De Wang","doi":"10.1007/978-981-19-9582-8_27","DOIUrl":"https://doi.org/10.1007/978-981-19-9582-8_27","url":null,"abstract":"","PeriodicalId":73273,"journal":{"name":"ICS ... : proceedings of the ... ACM International Conference on Supercomputing. International Conference on Supercomputing","volume":"95 1","pages":"305-316"},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86655275","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Scaling Model for vIMS on the Cloud vIMS在云上的伸缩模型
Ming-Huang Tsai, Yun Wang, Wu-Chun Chung
{"title":"Scaling Model for vIMS on the Cloud","authors":"Ming-Huang Tsai, Yun Wang, Wu-Chun Chung","doi":"10.1007/978-981-19-9582-8_22","DOIUrl":"https://doi.org/10.1007/978-981-19-9582-8_22","url":null,"abstract":"","PeriodicalId":73273,"journal":{"name":"ICS ... : proceedings of the ... ACM International Conference on Supercomputing. International Conference on Supercomputing","volume":"63 1","pages":"243-254"},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74495851","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Impact of Live Streaming on Personal Purchase Behavior 直播对个人购买行为的影响
Pai-Ching Tseng, Yi-Li Liou, I. Lin, Tzu-Ching Weng
{"title":"The Impact of Live Streaming on Personal Purchase Behavior","authors":"Pai-Ching Tseng, Yi-Li Liou, I. Lin, Tzu-Ching Weng","doi":"10.1007/978-981-19-9582-8_47","DOIUrl":"https://doi.org/10.1007/978-981-19-9582-8_47","url":null,"abstract":"","PeriodicalId":73273,"journal":{"name":"ICS ... : proceedings of the ... ACM International Conference on Supercomputing. International Conference on Supercomputing","volume":"167 1","pages":"533-544"},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89254307","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
ICS ... : proceedings of the ... ACM International Conference on Supercomputing. International Conference on Supercomputing
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1