{"title":"Positive input observer-based controller design for blood glucose regulation for type 1 diabetic patients: A backstepping approach","authors":"Mohamadreza Homayounzade","doi":"10.1049/syb2.12049","DOIUrl":null,"url":null,"abstract":"<p>In practice, there are many physical systems that can have only positive inputs, such as physiological systems. Most conventional control methods cannot ensure that the main system input is positive. A positive input observer-based controller is designed for an intravenous glucose tolerance test model of type 1 diabetes mellitus (T1DM). The backstepping (BS) approach is employed to design the feedback controller for artificial pancreas (AP) systems, based on the Extended Bergman's Minimal Model (EBMM). The EBMM represents the T1DM in terms of the blood glucose concentration (BGC), insulin concentration, and plasma level and the disturbance of insulin during medication due to either meal intake or burning sugar by doing some physical exercise. The insulin concentration and plasma level are estimated using observers, and these estimations are applied as feedback to the controller. The asymptotic stability of the observer-based controller is proved using the Lyapunov theorem. Moreover, it is proved that the system is bounded input-bounded output (BIBO) stable in the presence of uncertainties generated by uncertain parameters and external disturbance. For realistic situations, we consider only the BGC to be available for measurement and additionally inter-and intra-patient variability of system parameters is considered.</p>","PeriodicalId":50379,"journal":{"name":"IET Systems Biology","volume":"16 5","pages":"157-172"},"PeriodicalIF":1.9000,"publicationDate":"2022-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/36/21/SYB2-16-157.PMC9469794.pdf","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Systems Biology","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/syb2.12049","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 2
Abstract
In practice, there are many physical systems that can have only positive inputs, such as physiological systems. Most conventional control methods cannot ensure that the main system input is positive. A positive input observer-based controller is designed for an intravenous glucose tolerance test model of type 1 diabetes mellitus (T1DM). The backstepping (BS) approach is employed to design the feedback controller for artificial pancreas (AP) systems, based on the Extended Bergman's Minimal Model (EBMM). The EBMM represents the T1DM in terms of the blood glucose concentration (BGC), insulin concentration, and plasma level and the disturbance of insulin during medication due to either meal intake or burning sugar by doing some physical exercise. The insulin concentration and plasma level are estimated using observers, and these estimations are applied as feedback to the controller. The asymptotic stability of the observer-based controller is proved using the Lyapunov theorem. Moreover, it is proved that the system is bounded input-bounded output (BIBO) stable in the presence of uncertainties generated by uncertain parameters and external disturbance. For realistic situations, we consider only the BGC to be available for measurement and additionally inter-and intra-patient variability of system parameters is considered.
期刊介绍:
IET Systems Biology covers intra- and inter-cellular dynamics, using systems- and signal-oriented approaches. Papers that analyse genomic data in order to identify variables and basic relationships between them are considered if the results provide a basis for mathematical modelling and simulation of cellular dynamics. Manuscripts on molecular and cell biological studies are encouraged if the aim is a systems approach to dynamic interactions within and between cells.
The scope includes the following topics:
Genomics, transcriptomics, proteomics, metabolomics, cells, tissue and the physiome; molecular and cellular interaction, gene, cell and protein function; networks and pathways; metabolism and cell signalling; dynamics, regulation and control; systems, signals, and information; experimental data analysis; mathematical modelling, simulation and theoretical analysis; biological modelling, simulation, prediction and control; methodologies, databases, tools and algorithms for modelling and simulation; modelling, analysis and control of biological networks; synthetic biology and bioengineering based on systems biology.