Super-resolution multi-reference alignment.

IF 1.4 4区 数学 Q2 MATHEMATICS, APPLIED Information and Inference-A Journal of the Ima Pub Date : 2022-06-01 Epub Date: 2021-02-18 DOI:10.1093/imaiai/iaab003
Tamir Bendory, Ariel Jaffe, William Leeb, Nir Sharon, Amit Singer
{"title":"Super-resolution multi-reference alignment.","authors":"Tamir Bendory, Ariel Jaffe, William Leeb, Nir Sharon, Amit Singer","doi":"10.1093/imaiai/iaab003","DOIUrl":null,"url":null,"abstract":"<p><p>We study super-resolution multi-reference alignment, the problem of estimating a signal from many circularly shifted, down-sampled and noisy observations. We focus on the low SNR regime, and show that a signal in <math> <mrow><msup><mi>ℝ</mi> <mi>M</mi></msup> </mrow> </math> is uniquely determined when the number <i>L</i> of samples per observation is of the order of the square root of the signal's length ( <math><mrow><mi>L</mi> <mo>=</mo> <mi>O</mi> <mo>(</mo> <msqrt><mi>M</mi></msqrt> <mo>)</mo></mrow> </math> ). Phrased more informally, one can square the resolution. This result holds if the number of observations is proportional to 1/SNR<sup>3</sup>. In contrast, with fewer observations recovery is impossible even when the observations are not down-sampled (<i>L</i> = <i>M</i>). The analysis combines tools from statistical signal processing and invariant theory. We design an expectation-maximization algorithm and demonstrate that it can super-resolve the signal in challenging SNR regimes.</p>","PeriodicalId":45437,"journal":{"name":"Information and Inference-A Journal of the Ima","volume":"11 2","pages":"533-555"},"PeriodicalIF":1.4000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9374099/pdf/nihms-1776575.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information and Inference-A Journal of the Ima","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/imaiai/iaab003","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/2/18 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

We study super-resolution multi-reference alignment, the problem of estimating a signal from many circularly shifted, down-sampled and noisy observations. We focus on the low SNR regime, and show that a signal in M is uniquely determined when the number L of samples per observation is of the order of the square root of the signal's length ( L = O ( M ) ). Phrased more informally, one can square the resolution. This result holds if the number of observations is proportional to 1/SNR3. In contrast, with fewer observations recovery is impossible even when the observations are not down-sampled (L = M). The analysis combines tools from statistical signal processing and invariant theory. We design an expectation-maximization algorithm and demonstrate that it can super-resolve the signal in challenging SNR regimes.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
超分辨率多参考对齐。
我们研究的是超分辨率多参考对齐,即从许多圆周位移、下采样和噪声观测中估计信号的问题。我们将重点放在低信噪比机制上,并证明当每个观测点的采样数目为信号长度的平方根数量级(L = O ( M ))时,ℝ M 中的信号是唯一确定的。换个非正式的说法,我们可以将分辨率平方化。如果观测数据的数量与 1/SNR3 成正比,则这一结果成立。相反,如果观测值较少,即使观测值没有降低采样(L = M),也不可能恢复。分析结合了统计信号处理和不变理论的工具。我们设计了一种期望最大化算法,并证明它能在具有挑战性的信噪比情况下超级解译信号。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.90
自引率
0.00%
发文量
28
期刊最新文献
The Dyson equalizer: adaptive noise stabilization for low-rank signal detection and recovery. Bi-stochastically normalized graph Laplacian: convergence to manifold Laplacian and robustness to outlier noise. Phase transition and higher order analysis of Lq regularization under dependence. On statistical inference with high-dimensional sparse CCA. Black-box tests for algorithmic stability.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1