D. Yu. Butylskii, S. A. Mareev, I. I. Ryzhkov, M. Kh. Urtenov, P. Yu. Apel, V. V. Nikonenko
{"title":"Evaluation of the Effect of Electroosmosis on the Efficiency of Electrobaromembrane Separation with Track-Etched Membranes","authors":"D. Yu. Butylskii, S. A. Mareev, I. I. Ryzhkov, M. Kh. Urtenov, P. Yu. Apel, V. V. Nikonenko","doi":"10.1134/S2517751623050025","DOIUrl":null,"url":null,"abstract":"<p>The results of a theoretical analysis of the influence of the electroosmotic flow on the electromigration and convective transport of competing ions separated by the electrobaromembrane process are presented. Separated ions of the same charge sign move in an electric field through the pores of a track-etched membrane to the corresponding electrode, while a commensurate convective counterflow being created by the pressure drop across the membrane. A simplified model based on the convective electrodiffusion equation and the Hagen–Poiseuille equation allows the analysis of experimental data using only the effective transport numbers of ions in the membrane as fitting parameters. Using a 2D mathematical model described by the system of Nernst–Planck, Navier–Stokes, and Poisson equations, it is shown that the electroosmotic flow can cause the effective transport numbers of competing ions to exceed their values in solution, even if these ions are coions for the membrane.</p>","PeriodicalId":700,"journal":{"name":"Membranes and Membrane Technologies","volume":"5 5","pages":"370 - 377"},"PeriodicalIF":2.0000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Membranes and Membrane Technologies","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1134/S2517751623050025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The results of a theoretical analysis of the influence of the electroosmotic flow on the electromigration and convective transport of competing ions separated by the electrobaromembrane process are presented. Separated ions of the same charge sign move in an electric field through the pores of a track-etched membrane to the corresponding electrode, while a commensurate convective counterflow being created by the pressure drop across the membrane. A simplified model based on the convective electrodiffusion equation and the Hagen–Poiseuille equation allows the analysis of experimental data using only the effective transport numbers of ions in the membrane as fitting parameters. Using a 2D mathematical model described by the system of Nernst–Planck, Navier–Stokes, and Poisson equations, it is shown that the electroosmotic flow can cause the effective transport numbers of competing ions to exceed their values in solution, even if these ions are coions for the membrane.
期刊介绍:
The journal Membranes and Membrane Technologies publishes original research articles and reviews devoted to scientific research and technological advancements in the field of membranes and membrane technologies, including the following main topics:novel membrane materials and creation of highly efficient polymeric and inorganic membranes;hybrid membranes, nanocomposites, and nanostructured membranes;aqueous and nonaqueous filtration processes (micro-, ultra-, and nanofiltration; reverse osmosis);gas separation;electromembrane processes and fuel cells;membrane pervaporation and membrane distillation;membrane catalysis and membrane reactors;water desalination and wastewater treatment;hybrid membrane processes;membrane sensors;membrane extraction and membrane emulsification;mathematical simulation of porous structures and membrane separation processes;membrane characterization;membrane technologies in industry (energy, mineral extraction, pharmaceutics and medicine, chemistry and petroleum chemistry, food industry, and others);membranes and protection of environment (“green chemistry”).The journal has been published in Russian already for several years, English translations of the content used to be integrated in the journal Petroleum Chemistry. This journal is a split off with additional topics.