Haijun Dong, Man Qin, Peng Wang, Shufan Li, Xing Wang
{"title":"Regulatory effects and mechanisms of exercise on activation of brown adipose tissue (BAT) and browning of white adipose tissue (WAT).","authors":"Haijun Dong, Man Qin, Peng Wang, Shufan Li, Xing Wang","doi":"10.1080/21623945.2023.2266147","DOIUrl":null,"url":null,"abstract":"<p><p>Exercise is a universally acknowledged and healthy way to reducing body weight. However, the roles and mechanisms of exercise on metabolism of adipose tissue remain largely unclear. Adipose tissues include white adipose tissue (WAT), brown adipose tissue (BAT) and beige adipose tissue (BeAT). The main function of WAT is to store energy, while the BAT and BeAT can generate heat and consume energy. Therefore, promotion of BAT activation and WAT browning contributes to body weight loss. To date, many studies have suggested that exercise exerts the potential regulatory effects on BAT activation and WAT browning. In the present review, we compile the evidence for the regulatory effects of exercise on BAT activation and WAT browning and summarize the possible mechanisms whereby exercise modulates BAT activation and WAT browning, including activating sympathetic nervous system (SNS) and promoting the secretion of exerkines, with special focus on exerkines. These data might provide reference for prevention or treatment of obesity and the related metabolic disease through exercise.</p>","PeriodicalId":7226,"journal":{"name":"Adipocyte","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/41/7d/KADI_12_2266147.PMC10563630.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Adipocyte","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/21623945.2023.2266147","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/10/9 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0
Abstract
Exercise is a universally acknowledged and healthy way to reducing body weight. However, the roles and mechanisms of exercise on metabolism of adipose tissue remain largely unclear. Adipose tissues include white adipose tissue (WAT), brown adipose tissue (BAT) and beige adipose tissue (BeAT). The main function of WAT is to store energy, while the BAT and BeAT can generate heat and consume energy. Therefore, promotion of BAT activation and WAT browning contributes to body weight loss. To date, many studies have suggested that exercise exerts the potential regulatory effects on BAT activation and WAT browning. In the present review, we compile the evidence for the regulatory effects of exercise on BAT activation and WAT browning and summarize the possible mechanisms whereby exercise modulates BAT activation and WAT browning, including activating sympathetic nervous system (SNS) and promoting the secretion of exerkines, with special focus on exerkines. These data might provide reference for prevention or treatment of obesity and the related metabolic disease through exercise.
期刊介绍:
Adipocyte recognizes that the adipose tissue is the largest endocrine organ in the body, and explores the link between dysfunctional adipose tissue and the growing number of chronic diseases including diabetes, hypertension, cardiovascular disease and cancer. Historically, the primary function of the adipose tissue was limited to energy storage and thermoregulation. However, a plethora of research over the past 3 decades has recognized the dynamic role of the adipose tissue and its contribution to a variety of physiological processes including reproduction, angiogenesis, apoptosis, inflammation, blood pressure, coagulation, fibrinolysis, immunity and general metabolic homeostasis. The field of Adipose Tissue research has grown tremendously, and Adipocyte is the first international peer-reviewed journal of its kind providing a multi-disciplinary forum for research focusing exclusively on all aspects of adipose tissue physiology and pathophysiology. Adipocyte accepts high-profile submissions in basic, translational and clinical research.