William B Reinar, Ole K Tørresen, Alexander J Nederbragt, Michael Matschiner, Sissel Jentoft, Kjetill S Jakobsen
{"title":"Teleost genomic repeat landscapes in light of diversification rates and ecology.","authors":"William B Reinar, Ole K Tørresen, Alexander J Nederbragt, Michael Matschiner, Sissel Jentoft, Kjetill S Jakobsen","doi":"10.1186/s13100-023-00302-9","DOIUrl":null,"url":null,"abstract":"<p><p>Repetitive DNA make up a considerable fraction of most eukaryotic genomes. In fish, transposable element (TE) activity has coincided with rapid species diversification. Here, we annotated the repetitive content in 100 genome assemblies, covering the major branches of the diverse lineage of teleost fish. We investigated if TE content correlates with family level net diversification rates and found support for a weak negative correlation. Further, we demonstrated that TE proportion correlates with genome size, but not to the proportion of short tandem repeats (STRs), which implies independent evolutionary paths. Marine and freshwater fish had large differences in STR content, with the most extreme propagation detected in the genomes of codfish species and Atlantic herring. Such a high density of STRs is likely to increase the mutational load, which we propose could be counterbalanced by high fecundity as seen in codfishes and herring.</p>","PeriodicalId":18854,"journal":{"name":"Mobile DNA","volume":null,"pages":null},"PeriodicalIF":4.7000,"publicationDate":"2023-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10546739/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mobile DNA","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13100-023-00302-9","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Repetitive DNA make up a considerable fraction of most eukaryotic genomes. In fish, transposable element (TE) activity has coincided with rapid species diversification. Here, we annotated the repetitive content in 100 genome assemblies, covering the major branches of the diverse lineage of teleost fish. We investigated if TE content correlates with family level net diversification rates and found support for a weak negative correlation. Further, we demonstrated that TE proportion correlates with genome size, but not to the proportion of short tandem repeats (STRs), which implies independent evolutionary paths. Marine and freshwater fish had large differences in STR content, with the most extreme propagation detected in the genomes of codfish species and Atlantic herring. Such a high density of STRs is likely to increase the mutational load, which we propose could be counterbalanced by high fecundity as seen in codfishes and herring.
期刊介绍:
Mobile DNA is an online, peer-reviewed, open access journal that publishes articles providing novel insights into DNA rearrangements in all organisms, ranging from transposition and other types of recombination mechanisms to patterns and processes of mobile element and host genome evolution. In addition, the journal will consider articles on the utility of mobile genetic elements in biotechnological methods and protocols.