{"title":"CD40 agonism improves anti-tumor T cell priming induced by the combination of radiation therapy plus CTLA4 inhibition and enhances tumor response.","authors":"Maud Charpentier, Silvia Formenti, Sandra Demaria","doi":"10.1080/2162402X.2023.2258011","DOIUrl":null,"url":null,"abstract":"<p><p>Radiation therapy (RT) combined with CTLA4 blockers converts immunosuppressed (cold) mouse triple negative breast cancers (TNBCs) into immune infiltrated (hot) lesions. We have recently shown that targeting the myeloid compartment to improve dendritic cell activation is required for most TNBC-bearing mice to achieve superior therapeutic responses to RT plus CTLA4 inhibitors.</p>","PeriodicalId":19683,"journal":{"name":"Oncoimmunology","volume":"12 1","pages":"2258011"},"PeriodicalIF":7.2000,"publicationDate":"2023-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/80/78/KONI_12_2258011.PMC10506429.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oncoimmunology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/2162402X.2023.2258011","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Radiation therapy (RT) combined with CTLA4 blockers converts immunosuppressed (cold) mouse triple negative breast cancers (TNBCs) into immune infiltrated (hot) lesions. We have recently shown that targeting the myeloid compartment to improve dendritic cell activation is required for most TNBC-bearing mice to achieve superior therapeutic responses to RT plus CTLA4 inhibitors.
期刊介绍:
Tumor immunology explores the natural and therapy-induced recognition of cancers, along with the complex interplay between oncogenesis, inflammation, and immunosurveillance. In response to recent advancements, a new journal, OncoImmunology, is being launched to specifically address tumor immunology. The field has seen significant progress with the clinical demonstration and FDA approval of anticancer immunotherapies. There's also growing evidence suggesting that many current chemotherapeutic agents rely on immune effectors for their efficacy.
While oncologists have historically utilized chemotherapeutic and radiotherapeutic regimens successfully, they may have unwittingly leveraged the immune system's ability to recognize tumor-specific antigens and control cancer growth. Consequently, immunological biomarkers are increasingly crucial for cancer prognosis and predicting chemotherapy efficacy. There's strong support for combining conventional anticancer therapies with immunotherapies. OncoImmunology will welcome high-profile submissions spanning fundamental, translational, and clinical aspects of tumor immunology, including solid and hematological cancers, inflammation, and both innate and acquired immune responses.