Knockout of nuclear receptor HR38 gene impairs pupal–adult development in silkworm Bombyx mori

IF 2.3 2区 农林科学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Insect Molecular Biology Pub Date : 2023-09-22 DOI:10.1111/imb.12876
Xinyue Xu, Shangkun Pu, Mouzhen Jiang, Xiaoxuan Hu, Qing Wang, Jun Yu, Jianghong Chu, Guoqing Wei, Lei Wang
{"title":"Knockout of nuclear receptor HR38 gene impairs pupal–adult development in silkworm Bombyx mori","authors":"Xinyue Xu,&nbsp;Shangkun Pu,&nbsp;Mouzhen Jiang,&nbsp;Xiaoxuan Hu,&nbsp;Qing Wang,&nbsp;Jun Yu,&nbsp;Jianghong Chu,&nbsp;Guoqing Wei,&nbsp;Lei Wang","doi":"10.1111/imb.12876","DOIUrl":null,"url":null,"abstract":"<p>Nuclear receptors are ligand-regulated transcription factors that play important role in regulating insect metamorphosis through the ecdysone signalling pathway. In this study, we investigated the nuclear receptor <i>HR38</i> gene in <i>Bombyx mori</i> (<i>BmHR38</i>), belonging to the NR4A subfamily. <i>BmHR38</i> mRNA was highly expressed in the head and epidermis at the pupal stage. The expression of the <i>BmHR38</i> gene was influenced by different doses of 20E at different times. A <i>BmHR38</i> deletion mutant silkworm was generated using the clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9 system. Compared with the wild-type <i>B. mori</i>, the <i>BmHR38</i> deletion mutant resulted in abnormal development during the pupal stage, leading to either failed eclosion or the formation of abnormal adult wings. After silencing of <i>BmHR38</i> in the pupal stage, the phenotype of pupa or moth had no significant change, but it did result in reduced egg production. The mRNA levels of <i>USP</i>, <i>E75</i> and <i>E74</i> were significantly increased, while the transcript levels of <i>FTZ-F1</i> were suppressed after RNA interference. Furthermore, interference with <i>BmHR38</i> also inhibited the expressions of chitin metabolism genes, including <i>Chs1</i>, <i>Chs2</i>, <i>Chi</i>, <i>Chi-h</i> and <i>CDA</i>. Our results suggest that <i>BmHR38</i> is essential for pupal development and pupa–adult metamorphosis in <i>B. mori</i> by regulating the expression of NRs and chitin metabolism genes.</p>","PeriodicalId":13526,"journal":{"name":"Insect Molecular Biology","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2023-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Insect Molecular Biology","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/imb.12876","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Nuclear receptors are ligand-regulated transcription factors that play important role in regulating insect metamorphosis through the ecdysone signalling pathway. In this study, we investigated the nuclear receptor HR38 gene in Bombyx mori (BmHR38), belonging to the NR4A subfamily. BmHR38 mRNA was highly expressed in the head and epidermis at the pupal stage. The expression of the BmHR38 gene was influenced by different doses of 20E at different times. A BmHR38 deletion mutant silkworm was generated using the clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9 system. Compared with the wild-type B. mori, the BmHR38 deletion mutant resulted in abnormal development during the pupal stage, leading to either failed eclosion or the formation of abnormal adult wings. After silencing of BmHR38 in the pupal stage, the phenotype of pupa or moth had no significant change, but it did result in reduced egg production. The mRNA levels of USP, E75 and E74 were significantly increased, while the transcript levels of FTZ-F1 were suppressed after RNA interference. Furthermore, interference with BmHR38 also inhibited the expressions of chitin metabolism genes, including Chs1, Chs2, Chi, Chi-h and CDA. Our results suggest that BmHR38 is essential for pupal development and pupa–adult metamorphosis in B. mori by regulating the expression of NRs and chitin metabolism genes.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
核受体HR38基因敲除对家蚕蛹成体发育的影响。
核受体是配体调节的转录因子,通过蜕皮激素信号通路在调节昆虫变态中发挥重要作用。在本研究中,我们研究了家蚕核受体HR38基因(BmHR38),属于NR4A亚家族。BmHR38mRNA在蛹期的头部和表皮高度表达。BmHR38基因的表达受到不同剂量的20E在不同时间的影响。利用聚类规则间隔短回文重复序列(CRISPR)/Cas9系统产生了BmHR38缺失突变体家蚕。与野生型家蚕相比,BmHR38缺失突变体在蛹期导致发育异常,导致羽化失败或形成异常成虫翅膀。BmHR38在蛹期沉默后,蛹或蛾的表型没有显著变化,但确实导致产卵量减少。RNA干扰后,USP、E75和E74的mRNA水平显著升高,而FTZ-F1的转录水平受到抑制。此外,BmHR38的干扰还抑制了几丁质代谢基因的表达,包括Chs1、Chs2、Chi、Chi-h和CDA。我们的研究结果表明,BmHR38通过调节NRs和几丁质代谢基因的表达,对家蚕的蛹发育和蛹成虫变态至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Insect Molecular Biology
Insect Molecular Biology 生物-昆虫学
CiteScore
4.80
自引率
3.80%
发文量
68
审稿时长
6-12 weeks
期刊介绍: Insect Molecular Biology has been dedicated to providing researchers with the opportunity to publish high quality original research on topics broadly related to insect molecular biology since 1992. IMB is particularly interested in publishing research in insect genomics/genes and proteomics/proteins. This includes research related to: • insect gene structure • control of gene expression • localisation and function/activity of proteins • interactions of proteins and ligands/substrates • effect of mutations on gene/protein function • evolution of insect genes/genomes, especially where principles relevant to insects in general are established • molecular population genetics where data are used to identify genes (or regions of genomes) involved in specific adaptations • gene mapping using molecular tools • molecular interactions of insects with microorganisms including Wolbachia, symbionts and viruses or other pathogens transmitted by insects Papers can include large data sets e.g.from micro-array or proteomic experiments or analyses of genome sequences done in silico (subject to the data being placed in the context of hypothesis testing).
期刊最新文献
Host trees partially explain the complex bacterial communities of two threatened saproxylic beetles. Juvenile hormone controls trehalose metabolism by regulating trehalase 2 activity in ovarian development of Helicoverpa armigera. Issue Information NPF and sNPF can regulate the feeding behaviour and affect the growth and antioxidant levels of the rice brown planthopper, Nilaparvata lugens. GC-MS-based metabonomic analysis of silkworm haemolymph reveals four-stage metabolic responses to nucleopolyhedrovirus infection.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1