Model-based trajectory classification of anchored molecular motor-biopolymer interactions.

IF 2.4 Q3 BIOPHYSICS Biophysical reports Pub Date : 2023-09-14 eCollection Date: 2023-12-13 DOI:10.1016/j.bpr.2023.100130
John B Linehan, Gerald Alan Edwards, Vincent Boudreau, Amy Shaub Maddox, Paul S Maddox
{"title":"Model-based trajectory classification of anchored molecular motor-biopolymer interactions.","authors":"John B Linehan, Gerald Alan Edwards, Vincent Boudreau, Amy Shaub Maddox, Paul S Maddox","doi":"10.1016/j.bpr.2023.100130","DOIUrl":null,"url":null,"abstract":"<p><p>During zygotic mitosis in many species, forces generated at the cell cortex are required for the separation and migration of paternally provided centrosomes, pronuclear migration, segregation of genetic material, and cell division. Furthermore, in some species, force-generating interactions between spindle microtubules and the cortex position the mitotic spindle asymmetrically within the zygote, an essential step in asymmetric cell division. Understanding the mechanical and molecular mechanisms of microtubule-dependent force generation and therefore asymmetric cell division requires identification of individual cortical force-generating units <i>in vivo</i>. There is no current method for identifying individual force-generating units with high spatiotemporal resolution. Here, we present a method to determine both the location and the relative number of microtubule-dependent cortical force-generating units using single-molecule imaging of fluorescently labeled dynein. Dynein behavior is modeled to classify trajectories of cortically bound dynein according to whether they are interacting with a microtubule. The categorization strategy recapitulates well-known force asymmetries in <i>C. elegans</i> zygote mitosis. To evaluate the robustness of categorization, we used RNAi to deplete the tubulin subunit TBA-2. As predicted, this treatment reduced the number of trajectories categorized as engaged with a microtubule. Our technique will be a valuable tool to define the molecular mechanisms of dynein cortical force generation and its regulation as well as other instances wherein anchored motors interact with biopolymers (e.g., actin, tubulin, DNA).</p>","PeriodicalId":72402,"journal":{"name":"Biophysical reports","volume":"3 4","pages":"100130"},"PeriodicalIF":2.4000,"publicationDate":"2023-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/ca/1e/main.PMC10558742.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biophysical reports","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.bpr.2023.100130","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/12/13 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

During zygotic mitosis in many species, forces generated at the cell cortex are required for the separation and migration of paternally provided centrosomes, pronuclear migration, segregation of genetic material, and cell division. Furthermore, in some species, force-generating interactions between spindle microtubules and the cortex position the mitotic spindle asymmetrically within the zygote, an essential step in asymmetric cell division. Understanding the mechanical and molecular mechanisms of microtubule-dependent force generation and therefore asymmetric cell division requires identification of individual cortical force-generating units in vivo. There is no current method for identifying individual force-generating units with high spatiotemporal resolution. Here, we present a method to determine both the location and the relative number of microtubule-dependent cortical force-generating units using single-molecule imaging of fluorescently labeled dynein. Dynein behavior is modeled to classify trajectories of cortically bound dynein according to whether they are interacting with a microtubule. The categorization strategy recapitulates well-known force asymmetries in C. elegans zygote mitosis. To evaluate the robustness of categorization, we used RNAi to deplete the tubulin subunit TBA-2. As predicted, this treatment reduced the number of trajectories categorized as engaged with a microtubule. Our technique will be a valuable tool to define the molecular mechanisms of dynein cortical force generation and its regulation as well as other instances wherein anchored motors interact with biopolymers (e.g., actin, tubulin, DNA).

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
锚定分子马达-生物聚合物相互作用的基于模型的轨迹分类。
在许多物种的合子有丝分裂过程中,需要在细胞皮层产生的力来分离和迁移父系提供的中心体、原核迁移、遗传物质的分离和细胞分裂。此外,在一些物种中,纺锤体微管和皮层之间产生力的相互作用使有丝分裂纺锤体在合子内不对称定位,这是不对称细胞分裂的重要步骤。了解微管依赖性力产生的机械和分子机制,从而了解不对称细胞分裂,需要在体内识别单个皮层力产生单元。目前还没有用于识别具有高时空分辨率的单个力产生单元的方法。在这里,我们提出了一种使用荧光标记动力蛋白的单分子成像来确定微管依赖性皮层力产生单元的位置和相对数量的方法。Dynein行为被建模以根据皮层结合的Dynein是否与微管相互作用来对其轨迹进行分类。分类策略概括了秀丽隐杆线虫合子有丝分裂中众所周知的力不对称。为了评估分类的稳健性,我们使用RNAi来耗尽微管蛋白亚基TBA-2。正如预测的那样,这种治疗减少了与微管结合的轨迹数量。我们的技术将是一种有价值的工具,用于定义动力蛋白皮质力产生的分子机制及其调节,以及锚定马达与生物聚合物(如肌动蛋白、微管蛋白、DNA)相互作用的其他情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biophysical reports
Biophysical reports Biophysics
CiteScore
2.40
自引率
0.00%
发文量
0
审稿时长
75 days
期刊最新文献
Towards measurements of absolute membrane potential in Bacillus subtilis using fluorescence lifetime. Correlating Disordered Activation Domain Ensembles with Gene Expression Levels. DiffMAP-GP: Continuous 2D Diffusion Maps from Particle Trajectories without Data Binning using Gaussian Processes. Growing bacterial colonies harness emergent genealogical demixing to regulate organizational entropy. An effective drift-diffusion model for pandemic propagation and uncertainty prediction.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1