Which method delivers greater signal-to-noise ratio: Structural equation modelling or regression analysis with weighted composites?

IF 1.5 3区 心理学 Q3 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS British Journal of Mathematical & Statistical Psychology Pub Date : 2022-12-02 DOI:10.1111/bmsp.12293
Ke-Hai Yuan, Yongfei Fang
{"title":"Which method delivers greater signal-to-noise ratio: Structural equation modelling or regression analysis with weighted composites?","authors":"Ke-Hai Yuan,&nbsp;Yongfei Fang","doi":"10.1111/bmsp.12293","DOIUrl":null,"url":null,"abstract":"<p>Observational data typically contain measurement errors. Covariance-based structural equation modelling (CB-SEM) is capable of modelling measurement errors and yields consistent parameter estimates. In contrast, methods of regression analysis using weighted composites as well as a partial least squares approach to SEM facilitate the prediction and diagnosis of individuals/participants. But regression analysis with weighted composites has been known to yield attenuated regression coefficients when predictors contain errors. Contrary to the common belief that CB-SEM is the preferred method for the analysis of observational data, this article shows that regression analysis via weighted composites yields parameter estimates with much smaller standard errors, and thus corresponds to greater values of the signal-to-noise ratio (SNR). In particular, the SNR for the regression coefficient via the least squares (LS) method with equally weighted composites is mathematically greater than that by CB-SEM if the items for each factor are parallel, even when the SEM model is correctly specified and estimated by an efficient method. Analytical, numerical and empirical results also show that LS regression using weighted composites performs as well as or better than the normal maximum likelihood method for CB-SEM under many conditions even when the population distribution is multivariate normal. Results also show that the LS regression coefficients become more efficient when considering the sampling errors in the weights of composites than those that are conditional on weights.</p>","PeriodicalId":55322,"journal":{"name":"British Journal of Mathematical & Statistical Psychology","volume":"76 3","pages":"646-678"},"PeriodicalIF":1.5000,"publicationDate":"2022-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"British Journal of Mathematical & Statistical Psychology","FirstCategoryId":"102","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/bmsp.12293","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 6

Abstract

Observational data typically contain measurement errors. Covariance-based structural equation modelling (CB-SEM) is capable of modelling measurement errors and yields consistent parameter estimates. In contrast, methods of regression analysis using weighted composites as well as a partial least squares approach to SEM facilitate the prediction and diagnosis of individuals/participants. But regression analysis with weighted composites has been known to yield attenuated regression coefficients when predictors contain errors. Contrary to the common belief that CB-SEM is the preferred method for the analysis of observational data, this article shows that regression analysis via weighted composites yields parameter estimates with much smaller standard errors, and thus corresponds to greater values of the signal-to-noise ratio (SNR). In particular, the SNR for the regression coefficient via the least squares (LS) method with equally weighted composites is mathematically greater than that by CB-SEM if the items for each factor are parallel, even when the SEM model is correctly specified and estimated by an efficient method. Analytical, numerical and empirical results also show that LS regression using weighted composites performs as well as or better than the normal maximum likelihood method for CB-SEM under many conditions even when the population distribution is multivariate normal. Results also show that the LS regression coefficients become more efficient when considering the sampling errors in the weights of composites than those that are conditional on weights.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
哪一种方法的信噪比更大:结构方程模型还是加权复合材料回归分析?
观测数据通常包含测量误差。基于协方差的结构方程模型(CB-SEM)能够模拟测量误差并产生一致的参数估计。相比之下,使用加权复合的回归分析方法以及偏最小二乘方法的SEM有助于个体/参与者的预测和诊断。但是,当预测因子包含误差时,使用加权复合的回归分析会产生衰减的回归系数。与通常认为CB-SEM是观测数据分析的首选方法相反,本文表明,通过加权复合回归分析得到的参数估计具有更小的标准误差,因此对应于更大的信噪比(SNR)值。特别是,如果每个因素的项目是平行的,即使SEM模型被正确地指定和估计,通过具有等权重复合材料的最小二乘(LS)方法得到的回归系数的信噪比在数学上大于CB-SEM。分析、数值和实证结果还表明,在许多条件下,即使总体分布是多元正态分布,使用加权复合材料的LS回归也可以与CB-SEM的正态极大似然方法一样好,甚至更好。结果还表明,当考虑组合权重中的抽样误差时,LS回归系数比那些以权重为条件的回归系数更有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.00
自引率
3.80%
发文量
34
审稿时长
>12 weeks
期刊介绍: The British Journal of Mathematical and Statistical Psychology publishes articles relating to areas of psychology which have a greater mathematical or statistical aspect of their argument than is usually acceptable to other journals including: • mathematical psychology • statistics • psychometrics • decision making • psychophysics • classification • relevant areas of mathematics, computing and computer software These include articles that address substantitive psychological issues or that develop and extend techniques useful to psychologists. New models for psychological processes, new approaches to existing data, critiques of existing models and improved algorithms for estimating the parameters of a model are examples of articles which may be favoured.
期刊最新文献
A new Q-matrix validation method based on signal detection theory. Discriminability around polytomous knowledge structures and polytomous functions. Understanding linear interaction analysis with causal graphs. Identifiability analysis of the fixed-effects one-parameter logistic positive exponent model. Regularized Bayesian algorithms for Q-matrix inference based on saturated cognitive diagnosis modelling.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1