Melatonin suppresses tumor proliferation and metastasis by targeting GATA2 in endometrial cancer

IF 8.3 1区 医学 Q1 ENDOCRINOLOGY & METABOLISM Journal of Pineal Research Pub Date : 2023-10-09 DOI:10.1111/jpi.12918
Yangyou Liao, Ruiling Li, Jingyuan Pei, Juan Zhang, Bo Chen, Haojie Dong, Xiaoyu Feng, Hongshuo Zhang, Yuhong Shang, Linlin Sui, Ying Kong
{"title":"Melatonin suppresses tumor proliferation and metastasis by targeting GATA2 in endometrial cancer","authors":"Yangyou Liao,&nbsp;Ruiling Li,&nbsp;Jingyuan Pei,&nbsp;Juan Zhang,&nbsp;Bo Chen,&nbsp;Haojie Dong,&nbsp;Xiaoyu Feng,&nbsp;Hongshuo Zhang,&nbsp;Yuhong Shang,&nbsp;Linlin Sui,&nbsp;Ying Kong","doi":"10.1111/jpi.12918","DOIUrl":null,"url":null,"abstract":"<p>Endometrial cancer (EC) is a reproductive system disease that occurs in perimenopausal and postmenopausal women. However, its etiology is unclear. Melatonin (MT) has been identified as a therapeutic agent for EC; however, its exact mechanism remains unclear. In the present study, we determined that GATA-binding protein 2 (GATA2) is expressed at low levels in EC and regulated by MT. MT upregulates the expression of GATA2 through MT receptor 1A (MTNR1A), whereas GATA2 can promote the expression of <i>MTNR1A</i> by binding to its promoter region. In addition, in vivo and in vitro experiments showed that MT inhibited the proliferation and metastasis of EC cells by upregulating GATA2 expression. The protein kinase B (AKT) pathway was also affected. In conclusion, these findings suggest that MT and GATA2 play significant roles in EC development.</p>","PeriodicalId":198,"journal":{"name":"Journal of Pineal Research","volume":"76 1","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2023-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pineal Research","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jpi.12918","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

Abstract

Endometrial cancer (EC) is a reproductive system disease that occurs in perimenopausal and postmenopausal women. However, its etiology is unclear. Melatonin (MT) has been identified as a therapeutic agent for EC; however, its exact mechanism remains unclear. In the present study, we determined that GATA-binding protein 2 (GATA2) is expressed at low levels in EC and regulated by MT. MT upregulates the expression of GATA2 through MT receptor 1A (MTNR1A), whereas GATA2 can promote the expression of MTNR1A by binding to its promoter region. In addition, in vivo and in vitro experiments showed that MT inhibited the proliferation and metastasis of EC cells by upregulating GATA2 expression. The protein kinase B (AKT) pathway was also affected. In conclusion, these findings suggest that MT and GATA2 play significant roles in EC development.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
褪黑激素通过靶向子宫内膜癌症中的GATA2抑制肿瘤增殖和转移。
子宫内膜癌症(EC)是一种发生在围绝经期和绝经后妇女的生殖系统疾病。然而,其病因尚不清楚。褪黑素(MT)已被确定为EC的治疗剂;然而,其确切机制尚不清楚。在本研究中,我们确定GATA结合蛋白2(GATA2)在EC中低水平表达,并受MT调节。MT通过MT受体1A(MTNR1A)上调GATA2的表达,而GATA2可以通过与其启动子区结合来促进MTNR1A的表达。此外,体内和体外实验表明,MT通过上调GATA2的表达来抑制EC细胞的增殖和转移。蛋白激酶B(AKT)通路也受到影响。总之,这些发现表明MT和GATA2在EC的发展中起着重要作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Pineal Research
Journal of Pineal Research 医学-内分泌学与代谢
CiteScore
17.70
自引率
4.90%
发文量
66
审稿时长
1 months
期刊介绍: The Journal of Pineal Research welcomes original scientific research on the pineal gland and melatonin in vertebrates, as well as the biological functions of melatonin in non-vertebrates, plants, and microorganisms. Criteria for publication include scientific importance, novelty, timeliness, and clarity of presentation. The journal considers experimental data that challenge current thinking and welcomes case reports contributing to understanding the pineal gland and melatonin research. Its aim is to serve researchers in all disciplines related to the pineal gland and melatonin.
期刊最新文献
Diurnal Variation in Melatonin-Mediated Cardiac Protection via Per2 Expression in Heart Multi-Omics Analysis Reveals That AhNHL Contributes to Melatonin-Mediated Cadmium Tolerance in Peanut Plants Meditation Linked to Enhanced MRI Signal Intensity in the Pineal Gland and Reduced Predicted Brain Age Issue Information Mechanism of Exogenous Melatonin to Alleviate the Fermentation Performance of Saccharomyces cerevisiae Under Copper Stress
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1