Dissolution-permeation of hot-melt extruded amorphous solid dispersion comprising an experimental grade of HPMCAS.

IF 3.4 Q2 CHEMISTRY, MEDICINAL ADMET and DMPK Pub Date : 2023-07-22 eCollection Date: 2023-01-01 DOI:10.5599/admet.1586
Hironori Tanaka, Tetsuya Miyano, Hiroshi Ueda
{"title":"Dissolution-permeation of hot-melt extruded amorphous solid dispersion comprising an experimental grade of HPMCAS.","authors":"Hironori Tanaka,&nbsp;Tetsuya Miyano,&nbsp;Hiroshi Ueda","doi":"10.5599/admet.1586","DOIUrl":null,"url":null,"abstract":"<p><strong>Background and purpose: </strong>Physicochemical properties of an amorphous solid dispersion (ASD) comprising an experimental grade of hydroxypropyl methylcellulose acetate succinate (HPMCAS-MX) with lower glass transition temperature have been previously investigated. This study aimed to evaluate applicability of HPMCAS-MX to hot-melt extrusion (HME) and dissolution-permeation performance of prepared ASDs using MicroFLUX.</p><p><strong>Review approach: </strong>A physical mixture of indomethacin (IMC) and HPMCAS-MX or -MG (a commercial grade with higher transition temperature) at 20:80 weight ratio was hot-melt extruded to prepare an ASD (IMC-MX and IMC-MG, respectively). The dissolution-permeation performance and the stability of the ASDs were measured.</p><p><strong>Key results: </strong>A torque reduction at 120 °C implied that IMC-MX transformed into an amorphous state at this temperature, but IMC-MG required around 170 °C. This result was supported by Raman mapping of the the HME samples. IMC-MG and IMC-MX remained in an amorphous state at 40 °C for three months. The initial dissolution rate and solubility of the ASDs were higher than that of crystalline IMC. The apparent permeability of IMC from IMC-MX and IMC-MG was comparable but was approximately two-fold higher than that from crystalline IMC.</p><p><strong>Conclusion: </strong>HPMCAS-MX enabled HME process at a lower temperature and improved the dissolution-permeation performance of indomethacin.</p>","PeriodicalId":7259,"journal":{"name":"ADMET and DMPK","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2023-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10567069/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ADMET and DMPK","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5599/admet.1586","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

Background and purpose: Physicochemical properties of an amorphous solid dispersion (ASD) comprising an experimental grade of hydroxypropyl methylcellulose acetate succinate (HPMCAS-MX) with lower glass transition temperature have been previously investigated. This study aimed to evaluate applicability of HPMCAS-MX to hot-melt extrusion (HME) and dissolution-permeation performance of prepared ASDs using MicroFLUX.

Review approach: A physical mixture of indomethacin (IMC) and HPMCAS-MX or -MG (a commercial grade with higher transition temperature) at 20:80 weight ratio was hot-melt extruded to prepare an ASD (IMC-MX and IMC-MG, respectively). The dissolution-permeation performance and the stability of the ASDs were measured.

Key results: A torque reduction at 120 °C implied that IMC-MX transformed into an amorphous state at this temperature, but IMC-MG required around 170 °C. This result was supported by Raman mapping of the the HME samples. IMC-MG and IMC-MX remained in an amorphous state at 40 °C for three months. The initial dissolution rate and solubility of the ASDs were higher than that of crystalline IMC. The apparent permeability of IMC from IMC-MX and IMC-MG was comparable but was approximately two-fold higher than that from crystalline IMC.

Conclusion: HPMCAS-MX enabled HME process at a lower temperature and improved the dissolution-permeation performance of indomethacin.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
包括实验级HPMCAS的热熔挤出无定形固体分散体的溶解渗透。
背景和目的:先前已经研究了包含实验级乙酸琥珀酸羟丙基甲基纤维素(HPMCAS-MX)的无定形固体分散体(ASD)在较低玻璃化转变温度下的物理化学性质。本研究旨在评估HPMCAS-MX在热熔挤出(HME)中的适用性以及使用MicroFLUX制备的ASD的溶解-渗透性能。综述方法:将吲哚美辛(IMC)和HPMCAS-MX/MG(具有较高转变温度的商业级)的物理混合物以20:80的重量比热熔挤出制备ASD(分别为IMC-MX和IMC-MG)。测定了ASD的溶解-渗透性能和稳定性。关键结果:120°C下的扭矩降低意味着IMC-MX在该温度下转变为非晶态,但IMC-MG需要170°C左右。这一结果得到了HME样品拉曼图谱的支持。IMC-MG和IMC-MX在40°C下保持无定形状态三个月。ASD的初始溶解速率和溶解度高于结晶IMC。IMC-MAX和IMC-MG的IMC表观渗透率相当,但比结晶IMC的表观渗透率高出约两倍。结论:HPMCAS-MX在较低的温度下实现了HME过程,改善了吲哚美辛的溶解-渗透性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ADMET and DMPK
ADMET and DMPK Multiple-
CiteScore
4.40
自引率
0.00%
发文量
22
审稿时长
4 weeks
期刊介绍: ADMET and DMPK is an open access journal devoted to the rapid dissemination of new and original scientific results in all areas of absorption, distribution, metabolism, excretion, toxicology and pharmacokinetics of drugs. ADMET and DMPK publishes the following types of contributions: - Original research papers - Feature articles - Review articles - Short communications and Notes - Letters to Editors - Book reviews The scope of the Journal involves, but is not limited to, the following areas: - physico-chemical properties of drugs and methods of their determination - drug permeabilities - drug absorption - drug-drug, drug-protein, drug-membrane and drug-DNA interactions - chemical stability and degradations of drugs - instrumental methods in ADMET - drug metablic processes - routes of administration and excretion of drug - pharmacokinetic/pharmacodynamic study - quantitative structure activity/property relationship - ADME/PK modelling - Toxicology screening - Transporter identification and study
期刊最新文献
Determination of methotrexate using carbon paste electrode modified with ionic liquid/Ni-Co layered double hydroxide nanosheets as a voltammetric sensor. Food and bile micelle binding of zwitterionic antihistamine drugs. Cerium oxide nanoparticles-assisted aptasensor for chronic myeloid leukaemia detection. The biological applications of IPN hydrogels. Investigation of magnesium aluminometasilicate (Neusilin US2) based surface solid dispersion of sorafenib tosylate using QbD approach: In vitro and in vivo pharmacokinetic study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1