Focus-RCNet: a lightweight recyclable waste classification algorithm based on focus and knowledge distillation.

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC ACS Applied Electronic Materials Pub Date : 2023-10-11 DOI:10.1186/s42492-023-00146-3
Dashun Zheng, Rongsheng Wang, Yaofei Duan, Patrick Cheong-Iao Pang, Tao Tan
{"title":"Focus-RCNet: a lightweight recyclable waste classification algorithm based on focus and knowledge distillation.","authors":"Dashun Zheng, Rongsheng Wang, Yaofei Duan, Patrick Cheong-Iao Pang, Tao Tan","doi":"10.1186/s42492-023-00146-3","DOIUrl":null,"url":null,"abstract":"<p><p>Waste pollution is a significant environmental problem worldwide. With the continuous improvement in the living standards of the population and increasing richness of the consumption structure, the amount of domestic waste generated has increased dramatically, and there is an urgent need for further treatment. The rapid development of artificial intelligence has provided an effective solution for automated waste classification. However, the high computational power and complexity of algorithms make convolutional neural networks unsuitable for real-time embedded applications. In this paper, we propose a lightweight network architecture called Focus-RCNet, designed with reference to the sandglass structure of MobileNetV2, which uses deeply separable convolution to extract features from images. The Focus module is introduced to the field of recyclable waste image classification to reduce the dimensionality of features while retaining relevant information. To make the model focus more on waste image features while keeping the number of parameters small, we introduce the SimAM attention mechanism. In addition, knowledge distillation was used to further compress the number of parameters in the model. By training and testing on the TrashNet dataset, the Focus-RCNet model not only achieved an accuracy of 92[Formula: see text] but also showed high deployment mobility.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2023-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10567611/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1186/s42492-023-00146-3","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Waste pollution is a significant environmental problem worldwide. With the continuous improvement in the living standards of the population and increasing richness of the consumption structure, the amount of domestic waste generated has increased dramatically, and there is an urgent need for further treatment. The rapid development of artificial intelligence has provided an effective solution for automated waste classification. However, the high computational power and complexity of algorithms make convolutional neural networks unsuitable for real-time embedded applications. In this paper, we propose a lightweight network architecture called Focus-RCNet, designed with reference to the sandglass structure of MobileNetV2, which uses deeply separable convolution to extract features from images. The Focus module is introduced to the field of recyclable waste image classification to reduce the dimensionality of features while retaining relevant information. To make the model focus more on waste image features while keeping the number of parameters small, we introduce the SimAM attention mechanism. In addition, knowledge distillation was used to further compress the number of parameters in the model. By training and testing on the TrashNet dataset, the Focus-RCNet model not only achieved an accuracy of 92[Formula: see text] but also showed high deployment mobility.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Focus RCNet:一种基于Focus和知识蒸馏的轻量级可回收垃圾分类算法。
废物污染是世界范围内的一个重大环境问题。随着人口生活水平的不断提高和消费结构的日益丰富,生活垃圾的产生量急剧增加,迫切需要进一步处理。人工智能的快速发展为垃圾自动分类提供了有效的解决方案。然而,算法的高计算能力和复杂性使得卷积神经网络不适合实时嵌入式应用。在本文中,我们提出了一种称为Focus RCNet的轻量级网络架构,该架构参考MobileNetV2的沙漏结构设计,使用深度可分离卷积从图像中提取特征。Focus模块被引入可回收垃圾图像分类领域,以降低特征的维度,同时保留相关信息。为了使模型在保持参数数量较少的同时更多地关注废弃图像特征,我们引入了SimAM注意力机制。此外,还使用知识蒸馏来进一步压缩模型中的参数数量。通过在TrashNet数据集上进行训练和测试,Focus RCNet模型不仅实现了92的准确度[公式:见正文],而且显示出较高的部署移动性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
期刊最新文献
Hyperbaric oxygen treatment promotes tendon-bone interface healing in a rabbit model of rotator cuff tears. Oxygen-ozone therapy for myocardial ischemic stroke and cardiovascular disorders. Comparative study on the anti-inflammatory and protective effects of different oxygen therapy regimens on lipopolysaccharide-induced acute lung injury in mice. Heme oxygenase/carbon monoxide system and development of the heart. Hyperbaric oxygen for moderate-to-severe traumatic brain injury: outcomes 5-8 years after injury.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1