Logical modelling reveals the PDC-PDK interaction as the regulatory switch driving metabolic flexibility at the cellular level.

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC ACS Applied Electronic Materials Pub Date : 2019-09-09 eCollection Date: 2019-01-01 DOI:10.1186/s12263-019-0647-5
Samar Hk Tareen, Martina Kutmon, Ilja Cw Arts, Theo M de Kok, Chris T Evelo, Michiel E Adriaens
{"title":"Logical modelling reveals the PDC-PDK interaction as the regulatory switch driving metabolic flexibility at the cellular level.","authors":"Samar Hk Tareen,&nbsp;Martina Kutmon,&nbsp;Ilja Cw Arts,&nbsp;Theo M de Kok,&nbsp;Chris T Evelo,&nbsp;Michiel E Adriaens","doi":"10.1186/s12263-019-0647-5","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Metabolic flexibility is the ability of an organism to switch between substrates for energy metabolism, in response to the changing nutritional state and needs of the organism. On the cellular level, metabolic flexibility revolves around the tricarboxylic acid cycle by switching acetyl coenzyme A production from glucose to fatty acids and vice versa. In this study, we modelled cellular metabolic flexibility by constructing a logical model connecting glycolysis, fatty acid oxidation, fatty acid synthesis and the tricarboxylic acid cycle, and then using network analysis to study the behaviours of the model.</p><p><strong>Results: </strong>We observed that the substrate switching usually occurs through the inhibition of pyruvate dehydrogenase complex (PDC) by pyruvate dehydrogenase kinases (PDK), which moves the metabolism from glycolysis to fatty acid oxidation. Furthermore, we were able to verify four different regulatory models of PDK to contain known biological observations, leading to the biological plausibility of all four models across different cells and conditions.</p><p><strong>Conclusion: </strong>These results suggest that the cellular metabolic flexibility depends upon the PDC-PDK regulatory interaction as a key regulatory switch for changing metabolic substrates.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2019-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s12263-019-0647-5","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12263-019-0647-5","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2019/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 8

Abstract

Background: Metabolic flexibility is the ability of an organism to switch between substrates for energy metabolism, in response to the changing nutritional state and needs of the organism. On the cellular level, metabolic flexibility revolves around the tricarboxylic acid cycle by switching acetyl coenzyme A production from glucose to fatty acids and vice versa. In this study, we modelled cellular metabolic flexibility by constructing a logical model connecting glycolysis, fatty acid oxidation, fatty acid synthesis and the tricarboxylic acid cycle, and then using network analysis to study the behaviours of the model.

Results: We observed that the substrate switching usually occurs through the inhibition of pyruvate dehydrogenase complex (PDC) by pyruvate dehydrogenase kinases (PDK), which moves the metabolism from glycolysis to fatty acid oxidation. Furthermore, we were able to verify four different regulatory models of PDK to contain known biological observations, leading to the biological plausibility of all four models across different cells and conditions.

Conclusion: These results suggest that the cellular metabolic flexibility depends upon the PDC-PDK regulatory interaction as a key regulatory switch for changing metabolic substrates.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
逻辑模型揭示了PDC-PDK相互作用作为细胞水平上驱动代谢灵活性的调节开关。
背景:代谢灵活性是指生物体在不同底物之间进行能量代谢的能力,以应对生物体不断变化的营养状态和需求。在细胞水平上,代谢灵活性围绕着三羧酸循环,通过将乙酰辅酶A的产生从葡萄糖转换为脂肪酸,反之亦然。在这项研究中,我们通过构建一个连接糖酵解、脂肪酸氧化、脂肪酸合成和三羧酸循环的逻辑模型来模拟细胞代谢灵活性,然后使用网络分析来研究该模型的行为。结果:我们观察到底物转换通常通过丙酮酸脱氢酶激酶(PDK)对丙酮酸脱氢酶复合物(PDC)的抑制而发生,丙酮酸脱氢酶激酶将代谢从糖酵解转移到脂肪酸氧化。此外,我们能够验证PDK的四个不同调控模型,以包含已知的生物学观察结果,从而得出所有四个模型在不同细胞和条件下的生物学合理性。结论:这些结果表明,细胞代谢的灵活性取决于PDC-PDK的调节相互作用,PDC-PCK是改变代谢底物的关键调节开关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
期刊最新文献
Hyperbaric oxygen treatment promotes tendon-bone interface healing in a rabbit model of rotator cuff tears. Oxygen-ozone therapy for myocardial ischemic stroke and cardiovascular disorders. Comparative study on the anti-inflammatory and protective effects of different oxygen therapy regimens on lipopolysaccharide-induced acute lung injury in mice. Heme oxygenase/carbon monoxide system and development of the heart. Hyperbaric oxygen for moderate-to-severe traumatic brain injury: outcomes 5-8 years after injury.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1