Muhammad Hamza Basit, Bushra Rasheed, Kausar Malik, Zoha Masood, Samia Afzal
{"title":"Analysis of Transgenic Cotton Plants Containing Universal Stress Protein (GaUSP-1, GaUSP-2) and Zinc Finger Transcriptional Factor (GaZnF) Genes under Drought Stress.","authors":"Muhammad Hamza Basit, Bushra Rasheed, Kausar Malik, Zoha Masood, Samia Afzal","doi":"10.1615/CritRevEukaryotGeneExpr.2023048905","DOIUrl":null,"url":null,"abstract":"<p><p>Water is the most limiting factor for plant growth and crop productivity. Drought stress adversely affects crop yield throughout the world. Up to 50% of crop yield in Pakistan is severely affected by the shortage of water. Cotton is an important cash crop for Pakistan known as \"white gold.\" It accounts for 8.2% of the value added in agriculture and about 3.2% of GDP. Besides, being the world's fourth-largest cotton producer, our yield per acre ranks 13th in the world. If we look at the Pakistan scenario, water deficiency is one of the major yield-limiting factors. Limitations related to conventional breeding and the advancements in plant genomics and biotechnology applications have opened new horizons to plant improvements. Therefore, in the current study, we carry out a comparative analysis to evaluate the morphological, physiological biochemical and molecular parameters in transgenic plants containing GaUSP-1, GaUSP-2 and GaZinc Finger genes under different drought stress conditions. Data showed that transgenic plants showed more tolerance as compared to non-transgenic plants. Transgenic and non-transgenic assist us in our better understanding of the drought-responsive mechanism and its effect on different plant growth traits, so, in this way, we would be able to explore drought tolerance mechanism and this will open the doors for the identification of drought-related genes.</p>","PeriodicalId":56317,"journal":{"name":"Critical Reviews in Eukaryotic Gene Expression","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Critical Reviews in Eukaryotic Gene Expression","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1615/CritRevEukaryotGeneExpr.2023048905","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Water is the most limiting factor for plant growth and crop productivity. Drought stress adversely affects crop yield throughout the world. Up to 50% of crop yield in Pakistan is severely affected by the shortage of water. Cotton is an important cash crop for Pakistan known as "white gold." It accounts for 8.2% of the value added in agriculture and about 3.2% of GDP. Besides, being the world's fourth-largest cotton producer, our yield per acre ranks 13th in the world. If we look at the Pakistan scenario, water deficiency is one of the major yield-limiting factors. Limitations related to conventional breeding and the advancements in plant genomics and biotechnology applications have opened new horizons to plant improvements. Therefore, in the current study, we carry out a comparative analysis to evaluate the morphological, physiological biochemical and molecular parameters in transgenic plants containing GaUSP-1, GaUSP-2 and GaZinc Finger genes under different drought stress conditions. Data showed that transgenic plants showed more tolerance as compared to non-transgenic plants. Transgenic and non-transgenic assist us in our better understanding of the drought-responsive mechanism and its effect on different plant growth traits, so, in this way, we would be able to explore drought tolerance mechanism and this will open the doors for the identification of drought-related genes.
期刊介绍:
Critical ReviewsTM in Eukaryotic Gene Expression presents timely concepts and experimental approaches that are contributing to rapid advances in our mechanistic understanding of gene regulation, organization, and structure within the contexts of biological control and the diagnosis/treatment of disease. The journal provides in-depth critical reviews, on well-defined topics of immediate interest, written by recognized specialists in the field. Extensive literature citations provide a comprehensive information resource.
Reviews are developed from an historical perspective and suggest directions that can be anticipated. Strengths as well as limitations of methodologies and experimental strategies are considered.