J R Lakowicz, I Gryczynski, L Tolosa, J D Dattelbaum, F N Castellano, L Li, G Rao
{"title":"ADVANCES IN FLUORESCENCE SPECTROSCOPY: MULTI-PHOTON EXCITATION, ENGINEERED PROTEINS, MODULATION SENSING AND MICROSECOND RHENIUM METAL-LIGAND COMPLEXES.","authors":"J R Lakowicz, I Gryczynski, L Tolosa, J D Dattelbaum, F N Castellano, L Li, G Rao","doi":"10.12693/APhysPolA.95.179","DOIUrl":null,"url":null,"abstract":"<p><p>The technology and applications of fluorescence spectroscopy are rapidly advancing. In this overview presentation we summarize some recent developments from this laboratory. Two and three-photon excitation have been observed for a wide variety of intrinsic and extrinsic fluorophores, including tryptophan, tyrosine, DNA stains, membrane probes, and even alkanes. It has been possible to observe multi-photon excitation of biopolymers without obvious photochemical or photo-thermal effects. Although not de-scribed in our lecture, another area of increasing interest is the use of engineered proteins for chemical and clinical sensing. We show results for the glucose-galactose binding protein from <i>E. coli.</i> The labeled protein shows spectral changes in response to micromolar concentrations of glucose. This protein was used with a novel sensing method based on the modulated emission of the labeled proteins and a long lifetime reference fluorophore. And finally, we describe a recently developed rhenium complex which displays a lifetime near 3 <i>µs</i> in oxygenated aqueous solution. Such long life-time probes allow detection of microsecond dynamic processes, bypassing the usual nanosecond timescale limit of fluorescence. The result of these developments in protein engineering, sensing methods, and metal-ligand probe chemistry will be the increased use of fluorescence in clinical chemistry and point-of-care analyses.</p>","PeriodicalId":94290,"journal":{"name":"Acta physica Polonica: A","volume":"95 1","pages":"179-195"},"PeriodicalIF":0.0000,"publicationDate":"1999-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6816252/pdf/nihms-1055214.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta physica Polonica: A","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12693/APhysPolA.95.179","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The technology and applications of fluorescence spectroscopy are rapidly advancing. In this overview presentation we summarize some recent developments from this laboratory. Two and three-photon excitation have been observed for a wide variety of intrinsic and extrinsic fluorophores, including tryptophan, tyrosine, DNA stains, membrane probes, and even alkanes. It has been possible to observe multi-photon excitation of biopolymers without obvious photochemical or photo-thermal effects. Although not de-scribed in our lecture, another area of increasing interest is the use of engineered proteins for chemical and clinical sensing. We show results for the glucose-galactose binding protein from E. coli. The labeled protein shows spectral changes in response to micromolar concentrations of glucose. This protein was used with a novel sensing method based on the modulated emission of the labeled proteins and a long lifetime reference fluorophore. And finally, we describe a recently developed rhenium complex which displays a lifetime near 3 µs in oxygenated aqueous solution. Such long life-time probes allow detection of microsecond dynamic processes, bypassing the usual nanosecond timescale limit of fluorescence. The result of these developments in protein engineering, sensing methods, and metal-ligand probe chemistry will be the increased use of fluorescence in clinical chemistry and point-of-care analyses.