Insights into Modeling Approaches in Chemistry: Assessing Ligand-Protein Binding Thermodynamics Based on Rigid-Flexible Model Molecules

IF 7 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Chemical record Pub Date : 2023-10-17 DOI:10.1002/tcr.202300276
Prof. Dr. Igor V. Komarov, Prof. Dr. Volodymyr A. Bugrov, Anton Cherednychenko, Dr. Oleksandr O. Grygorenko
{"title":"Insights into Modeling Approaches in Chemistry: Assessing Ligand-Protein Binding Thermodynamics Based on Rigid-Flexible Model Molecules","authors":"Prof. Dr. Igor V. Komarov,&nbsp;Prof. Dr. Volodymyr A. Bugrov,&nbsp;Anton Cherednychenko,&nbsp;Dr. Oleksandr O. Grygorenko","doi":"10.1002/tcr.202300276","DOIUrl":null,"url":null,"abstract":"<p>In the field of chemistry, model compounds find extensive use for investigating complex objects. One prime example of such object is the protein-ligand supramolecular interaction. Prediction the enthalpic and entropic contribution to the free energy associated with this process, as well as the structural and dynamic characteristics of protein-ligand complexes poses considerable challenges. This review exemplifies modeling approaches used to study protein-ligand binding (PLB) thermodynamics by employing pairs of conformationally constrained/flexible model molecules. Strategically designing the model molecules can reduce the number of variables that influence thermodynamic parameters. This enables scientists to gain deeper insights into the enthalpy and entropy of PLB, which is relevant for medicinal chemistry and drug design. The model studies reviewed here demonstrate that rigidifying ligands may induce compensating changes in the enthalpy and entropy of binding. Some “rules of thumb” have started to emerge on how to minimize entropy-enthalpy compensation and design efficient rigidified or flexible ligands.</p>","PeriodicalId":10046,"journal":{"name":"Chemical record","volume":null,"pages":null},"PeriodicalIF":7.0000,"publicationDate":"2023-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical record","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/tcr.202300276","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In the field of chemistry, model compounds find extensive use for investigating complex objects. One prime example of such object is the protein-ligand supramolecular interaction. Prediction the enthalpic and entropic contribution to the free energy associated with this process, as well as the structural and dynamic characteristics of protein-ligand complexes poses considerable challenges. This review exemplifies modeling approaches used to study protein-ligand binding (PLB) thermodynamics by employing pairs of conformationally constrained/flexible model molecules. Strategically designing the model molecules can reduce the number of variables that influence thermodynamic parameters. This enables scientists to gain deeper insights into the enthalpy and entropy of PLB, which is relevant for medicinal chemistry and drug design. The model studies reviewed here demonstrate that rigidifying ligands may induce compensating changes in the enthalpy and entropy of binding. Some “rules of thumb” have started to emerge on how to minimize entropy-enthalpy compensation and design efficient rigidified or flexible ligands.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
化学建模方法的见解:基于刚性-柔性模型分子评估配体-蛋白质结合热力学。
在化学领域,模型化合物被广泛用于研究复杂物体。这种物体的一个主要例子是蛋白质-配体超分子相互作用。预测与该过程相关的焓和熵对自由能的贡献,以及蛋白质-配体复合物的结构和动力学特征,带来了相当大的挑战。这篇综述举例说明了通过使用构象约束/柔性模型分子对来研究蛋白质配体结合(PLB)热力学的建模方法。战略性地设计模型分子可以减少影响热力学参数的变量数量。这使科学家能够更深入地了解PLB的焓和熵,这与药物化学和药物设计有关。本文综述的模型研究表明,刚性化配体可能会引起结合焓和熵的补偿变化。关于如何最大限度地减少熵焓补偿和设计有效的刚性或柔性配体,一些“经验法则”已经开始出现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Chemical record
Chemical record 化学-化学综合
CiteScore
11.00
自引率
3.00%
发文量
188
审稿时长
>12 weeks
期刊介绍: The Chemical Record (TCR) is a "highlights" journal publishing timely and critical overviews of new developments at the cutting edge of chemistry of interest to a wide audience of chemists (2013 journal impact factor: 5.577). The scope of published reviews includes all areas related to physical chemistry, analytical chemistry, inorganic chemistry, organic chemistry, polymer chemistry, materials chemistry, bioorganic chemistry, biochemistry, biotechnology and medicinal chemistry as well as interdisciplinary fields. TCR provides carefully selected highlight papers by leading researchers that introduce the author''s own experimental and theoretical results in a framework designed to establish perspectives with earlier and contemporary work and provide a critical review of the present state of the subject. The articles are intended to present concise evaluations of current trends in chemistry research to help chemists gain useful insights into fields outside their specialization and provide experts with summaries of recent key developments.
期刊最新文献
Recent Developments in the Fabrication and Application of Superhydrophobic Suraces. Dibenzo-Fused Heterocycles: A Decade Update on the Syntheses of Carbazole, Dibenzofuran, and Dibenzothiophene. Catalytic Hydrodeoxygenation of Phenols and Cresols to Gasoline Range Biofuels. Multichannel Lanthanide-Doped Nanoprobes for Serodiagnosis and Therapy. Woodward-Hoffmann or Hoffmann-Woodward? Cycloadditions and the Transformation of Roald Hoffmann from a “Calculator” to an “Explainer”**
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1