Information-Theoretic Neural Decoding Reproduces Several Laws of Human Behavior.

Q1 Social Sciences Open Mind Pub Date : 2023-09-20 eCollection Date: 2023-01-01 DOI:10.1162/opmi_a_00101
S Thomas Christie, Hayden R Johnson, Paul R Schrater
{"title":"Information-Theoretic Neural Decoding Reproduces Several Laws of Human Behavior.","authors":"S Thomas Christie,&nbsp;Hayden R Johnson,&nbsp;Paul R Schrater","doi":"10.1162/opmi_a_00101","DOIUrl":null,"url":null,"abstract":"<p><p>Human response times conform to several regularities including the Hick-Hyman law, the power law of practice, speed-accuracy trade-offs, and the Stroop effect. Each of these has been thoroughly modeled in isolation, but no account describes these phenomena as predictions of a unified framework. We provide such a framework and show that the phenomena arise as decoding times in a simple neural rate code with an entropy stopping threshold. Whereas traditional information-theoretic encoding systems exploit task statistics to optimize encoding strategies, we move this optimization to the decoder, treating it as a Bayesian ideal observer that can track transmission statistics as prior information during decoding. Our approach allays prominent concerns that applying information-theoretic perspectives to modeling brain and behavior requires complex encoding schemes that are incommensurate with neural encoding.</p>","PeriodicalId":32558,"journal":{"name":"Open Mind","volume":"7 ","pages":"675-690"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10575563/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Mind","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1162/opmi_a_00101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"Social Sciences","Score":null,"Total":0}
引用次数: 0

Abstract

Human response times conform to several regularities including the Hick-Hyman law, the power law of practice, speed-accuracy trade-offs, and the Stroop effect. Each of these has been thoroughly modeled in isolation, but no account describes these phenomena as predictions of a unified framework. We provide such a framework and show that the phenomena arise as decoding times in a simple neural rate code with an entropy stopping threshold. Whereas traditional information-theoretic encoding systems exploit task statistics to optimize encoding strategies, we move this optimization to the decoder, treating it as a Bayesian ideal observer that can track transmission statistics as prior information during decoding. Our approach allays prominent concerns that applying information-theoretic perspectives to modeling brain and behavior requires complex encoding schemes that are incommensurate with neural encoding.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
信息论的神经解码再现了人类行为的若干规律。
人类的反应时间符合几个规律,包括希克-海曼定律、实践的幂律、速度-精度的权衡和斯特罗普效应。每一个都是孤立地彻底建模的,但没有人将这些现象描述为统一框架的预测。我们提供了这样一个框架,并证明了在具有熵停止阈值的简单神经速率码中,这些现象是随着解码时间而出现的。传统的信息论编码系统利用任务统计来优化编码策略,而我们将这种优化转移到解码器,将其视为贝叶斯理想观测器,可以在解码过程中将传输统计作为先验信息进行跟踪。我们的方法消除了人们的突出担忧,即将信息论视角应用于大脑和行为建模需要复杂的编码方案,而这些方案与神经编码不兼容。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Open Mind
Open Mind Social Sciences-Linguistics and Language
CiteScore
3.20
自引率
0.00%
发文量
15
审稿时长
53 weeks
期刊最新文献
Approximating Human-Level 3D Visual Inferences With Deep Neural Networks. Prosodic Cues Support Inferences About the Question's Pedagogical Intent. The Double Standard of Ownership. Combination and Differentiation Theories of Categorization: A Comparison Using Participants' Categorization Descriptions. Investigating Sensitivity to Shared Information and Personal Experience in Children's Use of Majority Information.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1