A correlated traits correlated (methods – 1) multitrait-multimethod model for augmented round-robin data

IF 1.5 3区 心理学 Q3 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS British Journal of Mathematical & Statistical Psychology Pub Date : 2023-10-16 DOI:10.1111/bmsp.12324
David Jendryczko, Fridtjof W. Nussbeck
{"title":"A correlated traits correlated (methods – 1) multitrait-multimethod model for augmented round-robin data","authors":"David Jendryczko,&nbsp;Fridtjof W. Nussbeck","doi":"10.1111/bmsp.12324","DOIUrl":null,"url":null,"abstract":"<p>We didactically derive a correlated traits correlated (methods – 1) [CTC(M – 1)] multitrait-multimethod (MTMM) model for dyadic round-robin data augmented by self-reports. The model is an extension of the CTC(M – 1) model for cross-classified data <i>and</i> can handle dependencies between raters and targets by including reciprocity covariance parameters that are inherent in augmented round-robin designs. It can be specified as a traditional structural equation model. We present the variance decomposition as well as consistency and reliability coefficients. Moreover, we explain how to evaluate fit of a CTC(M – 1) model for augmented round-robin data. In a simulation study, we explore the properties of the full information maximum likelihood estimation of the model. Model (mis)fit can be quite accurately detected with the test of not close fit and dynamic root mean square errors of approximation. Even with few small round-robin groups, relative parameter estimation bias and coverage rates are satisfactory, but several larger round-robin groups are needed to minimize relative parameter estimation inaccuracy. Further, neglecting the reciprocity covariance-structure of the augmented round-robin data does not severely bias the remaining parameter estimates. All analyses (including data, R scripts, and results) and the simulation study are provided in the Supporting Information. Implications and limitations are discussed.</p>","PeriodicalId":55322,"journal":{"name":"British Journal of Mathematical & Statistical Psychology","volume":"77 1","pages":"1-30"},"PeriodicalIF":1.5000,"publicationDate":"2023-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/bmsp.12324","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"British Journal of Mathematical & Statistical Psychology","FirstCategoryId":"102","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/bmsp.12324","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

We didactically derive a correlated traits correlated (methods – 1) [CTC(M – 1)] multitrait-multimethod (MTMM) model for dyadic round-robin data augmented by self-reports. The model is an extension of the CTC(M – 1) model for cross-classified data and can handle dependencies between raters and targets by including reciprocity covariance parameters that are inherent in augmented round-robin designs. It can be specified as a traditional structural equation model. We present the variance decomposition as well as consistency and reliability coefficients. Moreover, we explain how to evaluate fit of a CTC(M – 1) model for augmented round-robin data. In a simulation study, we explore the properties of the full information maximum likelihood estimation of the model. Model (mis)fit can be quite accurately detected with the test of not close fit and dynamic root mean square errors of approximation. Even with few small round-robin groups, relative parameter estimation bias and coverage rates are satisfactory, but several larger round-robin groups are needed to minimize relative parameter estimation inaccuracy. Further, neglecting the reciprocity covariance-structure of the augmented round-robin data does not severely bias the remaining parameter estimates. All analyses (including data, R scripts, and results) and the simulation study are provided in the Supporting Information. Implications and limitations are discussed.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于扩充循环数据的相关性状相关(方法-1)多性状多方法模型。
我们从教学上推导了一个相关特征相关(方法-1)[CTC(M-1)]多特征多方法(MTMM)模型,用于通过自我报告增强的二元循环数据。该模型是交叉分类数据CTC(M-1)模型的扩展,可以通过包括增强循环设计中固有的互易协方差参数来处理评分者和目标之间的相关性。它可以被指定为传统的结构方程模型。我们给出了方差分解以及一致性和可靠性系数。此外,我们还解释了如何评估CTC(M-1)模型对增广循环数据的拟合。在模拟研究中,我们探索了模型的全信息最大似然估计的性质。通过近似的非紧密拟合和动态均方根误差的检验,可以非常准确地检测模型拟合的错误。即使使用很少的小循环组,相对参数估计偏差和覆盖率也是令人满意的,但需要几个较大的循环组来最小化相对参数估计的不准确度。此外,忽略增强的循环数据的互易协方差结构不会严重偏移剩余的参数估计。支持信息中提供了所有分析(包括数据、R脚本和结果)和模拟研究。讨论了影响和局限性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.00
自引率
3.80%
发文量
34
审稿时长
>12 weeks
期刊介绍: The British Journal of Mathematical and Statistical Psychology publishes articles relating to areas of psychology which have a greater mathematical or statistical aspect of their argument than is usually acceptable to other journals including: • mathematical psychology • statistics • psychometrics • decision making • psychophysics • classification • relevant areas of mathematics, computing and computer software These include articles that address substantitive psychological issues or that develop and extend techniques useful to psychologists. New models for psychological processes, new approaches to existing data, critiques of existing models and improved algorithms for estimating the parameters of a model are examples of articles which may be favoured.
期刊最新文献
A new Q-matrix validation method based on signal detection theory. Discriminability around polytomous knowledge structures and polytomous functions. Understanding linear interaction analysis with causal graphs. Identifiability analysis of the fixed-effects one-parameter logistic positive exponent model. Regularized Bayesian algorithms for Q-matrix inference based on saturated cognitive diagnosis modelling.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1