A New Approach to Image-Based Recommender Systems with the Application of Heatmaps Maps

IF 3.3 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Journal of Artificial Intelligence and Soft Computing Research Pub Date : 2023-03-01 DOI:10.2478/jaiscr-2023-0007
Piotr Woldan, P. Duda, A. Cader, Ivan Laktionov
{"title":"A New Approach to Image-Based Recommender Systems with the Application of Heatmaps Maps","authors":"Piotr Woldan, P. Duda, A. Cader, Ivan Laktionov","doi":"10.2478/jaiscr-2023-0007","DOIUrl":null,"url":null,"abstract":"Abstract One of the fundamental issues of modern society is access to interesting and useful content. As the amount of available content increases, this task becomes more and more challenging. Our needs are not always formulated in words; sometimes we have to use complex data types like images. In this paper, we consider the three approaches to creating recommender systems based on image data. The proposed systems are evaluated on a real-world dataset. Two case studies are presented. The first one presents the case of an item with many similar objects in a database, and the second one with only a few similar items.","PeriodicalId":48494,"journal":{"name":"Journal of Artificial Intelligence and Soft Computing Research","volume":"16 13","pages":"63 - 72"},"PeriodicalIF":3.3000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Artificial Intelligence and Soft Computing Research","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.2478/jaiscr-2023-0007","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract One of the fundamental issues of modern society is access to interesting and useful content. As the amount of available content increases, this task becomes more and more challenging. Our needs are not always formulated in words; sometimes we have to use complex data types like images. In this paper, we consider the three approaches to creating recommender systems based on image data. The proposed systems are evaluated on a real-world dataset. Two case studies are presented. The first one presents the case of an item with many similar objects in a database, and the second one with only a few similar items.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于热图的图像推荐系统研究
现代社会的基本问题之一是获取有趣和有用的内容。随着可用内容的增加,这项任务变得越来越具有挑战性。我们的需要并不总是用语言表达;有时我们必须使用复杂的数据类型,如图像。在本文中,我们考虑了三种基于图像数据创建推荐系统的方法。提出的系统在真实世界的数据集上进行了评估。提出了两个案例研究。第一个示例表示数据库中具有许多相似对象的项的情况,第二个示例仅具有少数相似项的情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Artificial Intelligence and Soft Computing Research
Journal of Artificial Intelligence and Soft Computing Research COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-
CiteScore
7.00
自引率
25.00%
发文量
10
审稿时长
24 weeks
期刊介绍: Journal of Artificial Intelligence and Soft Computing Research (available also at Sciendo (De Gruyter)) is a dynamically developing international journal focused on the latest scientific results and methods constituting traditional artificial intelligence methods and soft computing techniques. Our goal is to bring together scientists representing both approaches and various research communities.
期刊最新文献
Bending Path Understanding Based on Angle Projections in Field Environments Self-Organized Operational Neural Networks for The Detection of Atrial Fibrillation Interpreting Convolutional Layers in DNN Model Based on Time–Frequency Representation of Emotional Speech A Few-Shot Learning Approach for Covid-19 Diagnosis Using Quasi-Configured Topological Spaces Metrics for Assessing Generalization of Deep Reinforcement Learning in Parameterized Environments
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1