Obtaining depth map from 2D non stereo images using deep neural networks

D. Mikhalchenko, A. Ivin, D. Malov
{"title":"Obtaining depth map from 2D non stereo images using deep neural networks","authors":"D. Mikhalchenko, A. Ivin, D. Malov","doi":"10.1108/IJIUS-03-2018-0007","DOIUrl":null,"url":null,"abstract":"\nPurpose\nSingle image depth prediction allows to extract depth information from a usual 2D image without usage of special sensors such as laser sensors, stereo cameras, etc. The purpose of this paper is to solve the problem of obtaining depth information from 2D image by applying deep neural networks (DNNs).\n\n\nDesign/methodology/approach\nSeveral experiments and topologies are presented: DNN that uses three inputs—sequence of 2D images from videostream and DNN that uses only one input. However, there is no data set, that contains videostream and corresponding depth maps for every frame. So technique of creating data sets using the Blender software is presented in this work.\n\n\nFindings\nDespite the problem of an insufficient amount of available data sets, the problem of overfitting was encountered. Although created models work on the data sets, they are still overfitted and cannot predict correct depth map for the random images, that were included into the data sets.\n\n\nOriginality/value\nExisting techniques of depth images creation are tested, using DNN.\n","PeriodicalId":42876,"journal":{"name":"International Journal of Intelligent Unmanned Systems","volume":"40 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2018-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1108/IJIUS-03-2018-0007","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Intelligent Unmanned Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/IJIUS-03-2018-0007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 1

Abstract

Purpose Single image depth prediction allows to extract depth information from a usual 2D image without usage of special sensors such as laser sensors, stereo cameras, etc. The purpose of this paper is to solve the problem of obtaining depth information from 2D image by applying deep neural networks (DNNs). Design/methodology/approach Several experiments and topologies are presented: DNN that uses three inputs—sequence of 2D images from videostream and DNN that uses only one input. However, there is no data set, that contains videostream and corresponding depth maps for every frame. So technique of creating data sets using the Blender software is presented in this work. Findings Despite the problem of an insufficient amount of available data sets, the problem of overfitting was encountered. Although created models work on the data sets, they are still overfitted and cannot predict correct depth map for the random images, that were included into the data sets. Originality/value Existing techniques of depth images creation are tested, using DNN.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用深度神经网络从二维非立体图像中获取深度图
目的单图像深度预测允许在不使用诸如激光传感器、立体相机等特殊传感器的情况下从通常的2D图像中提取深度信息。本文的目的是通过应用深度神经网络(DNN)来解决从2D图像中获取深度信息的问题。设计/方法论/方法提出了几个实验和拓扑结构:使用三个输入(视频流中的2D图像序列)的DNN和仅使用一个输入的DNN。然而,没有数据集,它包含视频流和每帧对应的深度图。因此,本文提出了使用Blender软件创建数据集的技术。发现尽管存在可用数据集数量不足的问题,但还是遇到了过度拟合的问题。尽管创建的模型对数据集有效,但它们仍然过拟合,无法预测数据集中包含的随机图像的正确深度图。独创性/价值使用DNN测试深度图像创建的现有技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.50
自引率
0.00%
发文量
21
期刊最新文献
Design of hexacopter and finite element analysis for material selection Towards a novel cyber physical control system framework: a deep learning driven use case Employing a multi-sensor fusion array to detect objects for an orbital transfer vehicle to remove space debris Communication via quad/hexa-copters during disasters Nonlinear optimal control for UAVs with tilting rotors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1