Multiple Insecticide Resistance and Associated Metabolic-Based Mechanisms in a Myzus Persicae (Sulzer) Population

IF 3.3 2区 农林科学 Q1 AGRONOMY Agronomy-Basel Pub Date : 2023-08-29 DOI:10.3390/agronomy13092276
Jinfeng Hu, F. Chen, Jun Wang, Wenhua Rao, Lei Lin, G. Fan
{"title":"Multiple Insecticide Resistance and Associated Metabolic-Based Mechanisms in a Myzus Persicae (Sulzer) Population","authors":"Jinfeng Hu, F. Chen, Jun Wang, Wenhua Rao, Lei Lin, G. Fan","doi":"10.3390/agronomy13092276","DOIUrl":null,"url":null,"abstract":"The green peach aphid, Myzus persicae (Sulzer) (Hemiptera: Aphididae), is an economically devastating crop pest worldwide. The M. persicae (SEF-R) population of a cabbage field in China was tested for susceptibilities to 13 insecticides. Compared with the susceptible population (FFJ-S), extremely high and high resistance to beta-cypermethrin (324-fold) and imidacloprid (106.9-fold) was detected in SEF-R. More importantly, this is the first report of resistance in the field M. persicae population to sulfoxaflor (32.4-fold), flupyradifurone (9.5-fold), pymetrozine (34.8-fold), spirotetramat (8.1-fold), flonicamid (5.8-fold), and broflanilide (15.8-fold) in China when compared with FFJ-S. The resistance factor decayed to a low level to sulfoxaflor and pymetrozine after 15 generations without any selection pressure. The resistance-related mutations (R81T and kdr) detected in SEF indicated target-site resistance to neonicotinoids and pyrethroids, respectively. Biochemical assays revealed the involvement of monooxygenase, carboxylesterase, superoxide dismutase, and peroxidase in a multi-insecticide resistance mechanism. The overexpression of P450s, esterases, and a UDP-glycosyltransferase might be responsible for the multi-insecticide resistance in SEF-R. The knockdown of CYP6CY3 in SEF-R increased its susceptibility to imidacloprid, thiacloprid, and thiamethoxam, which verified that P450s play vital roles in neonicotinoid metabolism. Our findings provide guidance for the rational use of insecticides to delay resistance development in GPA.","PeriodicalId":56066,"journal":{"name":"Agronomy-Basel","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2023-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Agronomy-Basel","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3390/agronomy13092276","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0

Abstract

The green peach aphid, Myzus persicae (Sulzer) (Hemiptera: Aphididae), is an economically devastating crop pest worldwide. The M. persicae (SEF-R) population of a cabbage field in China was tested for susceptibilities to 13 insecticides. Compared with the susceptible population (FFJ-S), extremely high and high resistance to beta-cypermethrin (324-fold) and imidacloprid (106.9-fold) was detected in SEF-R. More importantly, this is the first report of resistance in the field M. persicae population to sulfoxaflor (32.4-fold), flupyradifurone (9.5-fold), pymetrozine (34.8-fold), spirotetramat (8.1-fold), flonicamid (5.8-fold), and broflanilide (15.8-fold) in China when compared with FFJ-S. The resistance factor decayed to a low level to sulfoxaflor and pymetrozine after 15 generations without any selection pressure. The resistance-related mutations (R81T and kdr) detected in SEF indicated target-site resistance to neonicotinoids and pyrethroids, respectively. Biochemical assays revealed the involvement of monooxygenase, carboxylesterase, superoxide dismutase, and peroxidase in a multi-insecticide resistance mechanism. The overexpression of P450s, esterases, and a UDP-glycosyltransferase might be responsible for the multi-insecticide resistance in SEF-R. The knockdown of CYP6CY3 in SEF-R increased its susceptibility to imidacloprid, thiacloprid, and thiamethoxam, which verified that P450s play vital roles in neonicotinoid metabolism. Our findings provide guidance for the rational use of insecticides to delay resistance development in GPA.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
桃蚜种群多重杀虫剂抗性及其代谢机制研究
桃蚜(Myzus persicae, Sulzer)(半翅目:蚜虫科)是世界范围内危害农作物经济的害虫。对中国某菜地桃蚜(M. persicae, SEF-R)种群对13种杀虫剂的敏感性进行了试验。与敏感种群(FFJ-S)相比,SEF-R对高效氯氰菊酯(324倍)和吡虫啉(106.9倍)有极高和高抗性。更重要的是,与FFJ-S相比,这是中国首次报道桃蚜种群对亚砜(32.4倍)、氟吡喃酮(9.5倍)、吡蚜酮(34.8倍)、螺虫(8.1倍)、氟虫胺(5.8倍)和溴氟醚(15.8倍)的抗性。在没有选择压力的情况下,15代后对亚砜和吡蚜酮的抗性因子衰减到较低水平。SEF中检测到的抗性相关突变(R81T和kdr)分别表示对新烟碱类和拟除虫菊酯的靶位抗性。生化分析表明,单加氧酶、羧酸酯酶、超氧化物歧化酶和过氧化物酶参与了多药抗性机制。SEF-R中p450、酯酶和一种udp -糖基转移酶的过表达可能与SEF-R对多种杀虫剂的抗性有关。SEF-R中CYP6CY3的下调增加了其对吡虫啉、噻虫啉和噻虫嗪的易感性,验证了p450在新烟碱类代谢中发挥重要作用。本研究结果可为合理使用杀虫剂延缓GPA抗性发展提供指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Agronomy-Basel
Agronomy-Basel Agricultural and Biological Sciences-Agronomy and Crop Science
CiteScore
6.20
自引率
13.50%
发文量
2665
审稿时长
20.32 days
期刊介绍: Agronomy (ISSN 2073-4395) is an international and cross-disciplinary scholarly journal on agronomy and agroecology. It publishes reviews, regular research papers, communications and short notes, and there is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental and/or methodical details must be provided for research articles.
期刊最新文献
Straw Mulching Combined with Phosphorus Fertilizer Increases Fertile Florets of Wheat by Enhancing Leaf Photosynthesis and Assimilate Utilization Design and Parameter Optimization of a Negative-Pressure Peanut Fruit-Soil Separating Device Tomato Recognition and Localization Method Based on Improved YOLOv5n-seg Model and Binocular Stereo Vision Compost Tea as Organic Fertilizer and Plant Disease Control: Bibliometric Analysis Silver and Hematite Nanoparticles Had a Limited Effect on the Bacterial Community Structure in Soil Cultivated with Phaseolus vulgaris L.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1