Karla E. Zarco-González, J. D. Valle-García, Yendi E. Navarro-Noya, Fabián Fernández-Luqueño, Luc Dendooven
{"title":"Silver and Hematite Nanoparticles Had a Limited Effect on the Bacterial Community Structure in Soil Cultivated with Phaseolus vulgaris L.","authors":"Karla E. Zarco-González, J. D. Valle-García, Yendi E. Navarro-Noya, Fabián Fernández-Luqueño, Luc Dendooven","doi":"10.3390/agronomy13092341","DOIUrl":null,"url":null,"abstract":"The amount of nanoparticles that enters the environment has increased substantially in the last years. How they might affect plant characteristics and the bacterial community structure when they enter the soil, however, is still debated, as there is a continuous interaction between them. In this study, we determined the effect of silver (Ag-NPs) and hematite (α-Fe2O3-NPs) nanoparticles (0.15 g kg−1) on the characteristics of common bean (Phaseolus vulgaris L.) and the rhizosphere, non-rhizosphere and uncultivated soil bacterial community. The application of Ag-NPs or α-Fe2O3-NPs did not affect plant growth but changed the amount of some heavy metals in the roots and aerial parts. The application of nanoparticles had a limited effect on the diversity, structure and functional profile of the soil and rhizosphere bacterial communities, but they were altered by cultivation of the bean plants and changed over time. It was found that application of Ag-NPs or α-Fe2O3-NPs had no effect on bean plant growth and only a small effect on the bacterial community structure and its putative metabolic functions. These findings show that in a complex system, such as a soil, different factors might affect the bacterial community structure and alter the possible effect of nanoparticles on it.","PeriodicalId":56066,"journal":{"name":"Agronomy-Basel","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2023-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Agronomy-Basel","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3390/agronomy13092341","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0
Abstract
The amount of nanoparticles that enters the environment has increased substantially in the last years. How they might affect plant characteristics and the bacterial community structure when they enter the soil, however, is still debated, as there is a continuous interaction between them. In this study, we determined the effect of silver (Ag-NPs) and hematite (α-Fe2O3-NPs) nanoparticles (0.15 g kg−1) on the characteristics of common bean (Phaseolus vulgaris L.) and the rhizosphere, non-rhizosphere and uncultivated soil bacterial community. The application of Ag-NPs or α-Fe2O3-NPs did not affect plant growth but changed the amount of some heavy metals in the roots and aerial parts. The application of nanoparticles had a limited effect on the diversity, structure and functional profile of the soil and rhizosphere bacterial communities, but they were altered by cultivation of the bean plants and changed over time. It was found that application of Ag-NPs or α-Fe2O3-NPs had no effect on bean plant growth and only a small effect on the bacterial community structure and its putative metabolic functions. These findings show that in a complex system, such as a soil, different factors might affect the bacterial community structure and alter the possible effect of nanoparticles on it.
在过去的几年里,进入环境的纳米颗粒的数量大幅增加。然而,当它们进入土壤时,它们如何影响植物特性和细菌群落结构,仍然存在争议,因为它们之间存在持续的相互作用。研究了银(Ag-NPs)和赤铁矿(α-Fe2O3-NPs)纳米颗粒(0.15 g kg−1)对菜豆(Phaseolus vulgaris L.)及根际、非根际和未开垦土壤细菌群落特征的影响。Ag-NPs和α-Fe2O3-NPs的施用不影响植株生长,但改变了根系和地上部分重金属的含量。施用纳米颗粒对土壤和根际细菌群落的多样性、结构和功能特征的影响有限,但它们会随着豆类植物的种植而改变,并随着时间的推移而改变。结果表明,施用Ag-NPs或α-Fe2O3-NPs对大豆植株生长无明显影响,对细菌群落结构及其代谢功能影响较小。这些发现表明,在土壤等复杂系统中,不同的因素可能会影响细菌群落结构,并改变纳米颗粒对其可能产生的影响。
Agronomy-BaselAgricultural and Biological Sciences-Agronomy and Crop Science
CiteScore
6.20
自引率
13.50%
发文量
2665
审稿时长
20.32 days
期刊介绍:
Agronomy (ISSN 2073-4395) is an international and cross-disciplinary scholarly journal on agronomy and agroecology. It publishes reviews, regular research papers, communications and short notes, and there is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental and/or methodical details must be provided for research articles.