Quantum Calculation, Docking, ADMET and Molecular Dynamics of Ketal and Non-ketal Forms of D-glucofuranose Against Bacteria, Black & White Fungus, and Triple-Negative Breast Cancer

Q3 Biochemistry, Genetics and Molecular Biology Biointerface Research in Applied Chemistry Pub Date : 2022-10-08 DOI:10.33263/briac134.374
{"title":"Quantum Calculation, Docking, ADMET and Molecular Dynamics of Ketal and Non-ketal Forms of D-glucofuranose Against Bacteria, Black & White Fungus, and Triple-Negative Breast Cancer","authors":"","doi":"10.33263/briac134.374","DOIUrl":null,"url":null,"abstract":"D-glucofuranose has potent bioactivity against numerous diseases and pathogens, such as bacteria, fungi, viruses, and cancer. Normally, the ketal form of D-glucofuranose is converted into the non-ketal form by drug metabolism in the human body; as a result, both the ketal and non-ketal forms of D-glucofuranose are considered. To make a comparative biological activity study of ketal and non-ketal species of nine derivatives of D-glucofuranose, two bacteria, black fungus, white fungus, and triple-negative breast cancer, were selected. Firstly, the PASS prediction data from the online PASS tool indicated the probability of pathogenic efficacy through the Pa and Pi parameters. Secondly, the computational studies, such as molecular docking, molecular dynamic, ADMET, drug-likeness, pharmacokinetic, aquatic, and non-aquatic features, were calculated with three FDA-approved drugs, including azithromycin, nystatin, and cyclophosphamide. A comparative study of computational data has been performed where the ketal forms of D-glucofuranose derivatives were found highly biologically active with the satisfaction of the pharmacokinetic parameters, ADMET parameters, and Lipinski rule.","PeriodicalId":9026,"journal":{"name":"Biointerface Research in Applied Chemistry","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biointerface Research in Applied Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33263/briac134.374","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 5

Abstract

D-glucofuranose has potent bioactivity against numerous diseases and pathogens, such as bacteria, fungi, viruses, and cancer. Normally, the ketal form of D-glucofuranose is converted into the non-ketal form by drug metabolism in the human body; as a result, both the ketal and non-ketal forms of D-glucofuranose are considered. To make a comparative biological activity study of ketal and non-ketal species of nine derivatives of D-glucofuranose, two bacteria, black fungus, white fungus, and triple-negative breast cancer, were selected. Firstly, the PASS prediction data from the online PASS tool indicated the probability of pathogenic efficacy through the Pa and Pi parameters. Secondly, the computational studies, such as molecular docking, molecular dynamic, ADMET, drug-likeness, pharmacokinetic, aquatic, and non-aquatic features, were calculated with three FDA-approved drugs, including azithromycin, nystatin, and cyclophosphamide. A comparative study of computational data has been performed where the ketal forms of D-glucofuranose derivatives were found highly biologically active with the satisfaction of the pharmacokinetic parameters, ADMET parameters, and Lipinski rule.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
量子计算,对接,ADMET和分子动力学的酮型和非酮型d -葡聚糖抗细菌,黑白真菌和三阴性乳腺癌
d -葡聚糖对许多疾病和病原体,如细菌、真菌、病毒和癌症具有强大的生物活性。正常情况下,d -葡聚糖在人体内通过药物代谢转化为非酮型;因此,考虑了d -葡萄糖葡萄糖的酮态和非酮态形式。以黑木耳、白木耳和三阴性乳腺癌两种细菌为研究对象,对九种d -葡聚糖衍生物的酮类和非酮类生物活性进行比较研究。首先,通过在线PASS工具的PASS预测数据,通过Pa和Pi参数表示致病功效的概率。其次,以阿奇霉素、制霉菌素、环磷酰胺3种fda批准的药物进行分子对接、分子动力学、ADMET、药物相似性、药代动力学、水生和非水生特征等计算研究。对计算数据进行了比较研究,发现d -葡聚糖衍生物的酮形具有高度的生物活性,符合药代动力学参数、ADMET参数和Lipinski规则。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.80
自引率
0.00%
发文量
256
期刊介绍: Biointerface Research in Applied Chemistry is an international and interdisciplinary research journal that focuses on all aspects of nanoscience, bioscience and applied chemistry. Submissions are solicited in all topical areas, ranging from basic aspects of the science materials to practical applications of such materials. With 6 issues per year, the first one published on the 15th of February of 2011, Biointerface Research in Applied Chemistry is an open-access journal, making all research results freely available online. The aim is to publish original papers, short communications as well as review papers highlighting interdisciplinary research, the potential applications of the molecules and materials in the bio-field. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible.
期刊最新文献
Editorial. Thirteen Years of Free Publication: From the Optimistic Horizons to Failure and Discreditation Comparative Review of Different Adsorption Techniques Used in Heavy Metals Removal in Water Microstructure and Elastic Properties of Hydroxyapatite/Alumina Nanocomposites Prepared by Mechanical Alloying Technique for Biomedical Applications Investigation on Controlling Therapy of Bone Skeletal and Marrow Cancer: A Biophysical Chemistry and Molecular Dynamic Study of Bisphosphonates Interaction with Bone Structures The Theoretical Description for Amavadin-Ion Electrochemical Determination in Amanita muscaria Mushroom Pulp and Extract by Galvanostatic Conducting Polymer Doping
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1