Investigation on Controlling Therapy of Bone Skeletal and Marrow Cancer: A Biophysical Chemistry and Molecular Dynamic Study of Bisphosphonates Interaction with Bone Structures

Q3 Biochemistry, Genetics and Molecular Biology Biointerface Research in Applied Chemistry Pub Date : 2022-11-01 DOI:10.33263/briac134.396
{"title":"Investigation on Controlling Therapy of Bone Skeletal and Marrow Cancer: A Biophysical Chemistry and Molecular Dynamic Study of Bisphosphonates Interaction with Bone Structures","authors":"","doi":"10.33263/briac134.396","DOIUrl":null,"url":null,"abstract":"For more than four decades, the bisphosphonates family has been applied for osteoporosis and skeletal metastasis therapy. These drugs decrease the viability of cancer cells that are guided through the HER group of receptor tyrosine kinases. We discussed that bisphosphonates straightly bind to and inhibit HER kinases. In this study for docking a nitrogen-containing bisphosphonate with human FPPS and a few other targets, the iGEMDOCK docking software has been used. Nitrogen-containing bisphosphonates (NBPs) are mostly applied for bone treatment and also for the loss of skeletal disorders. The adsorption, retention, diffusion, and release of (NBPs) in bone are controlled by their affinities to such mineral compounds. Bisphosphonates have a high affinity for Ca2+ and therefore attack bone minerals, where they are internalized by bone-resorbing osteoclasts and inhibit osteoclast function. Nitrogen-containing bisphosphonates (NBPs), including Alendronate, Zolendronate, Risedronic, Ibandronate, and Pamidronate, are functionalized as effective inhibitors of bone resorption diseases. It targets FPPS (osteoclast farnesyl pyrophosphate synthase) to inhibit protein prenylation. Generally, the strong interaction sequence is as follows Alendronate > Risedronic > Pamidronate > Zolendronate > Ibandronate, and this was because of strong electrostatic interactions between amine groups and phosphate ions.","PeriodicalId":9026,"journal":{"name":"Biointerface Research in Applied Chemistry","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biointerface Research in Applied Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33263/briac134.396","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

Abstract

For more than four decades, the bisphosphonates family has been applied for osteoporosis and skeletal metastasis therapy. These drugs decrease the viability of cancer cells that are guided through the HER group of receptor tyrosine kinases. We discussed that bisphosphonates straightly bind to and inhibit HER kinases. In this study for docking a nitrogen-containing bisphosphonate with human FPPS and a few other targets, the iGEMDOCK docking software has been used. Nitrogen-containing bisphosphonates (NBPs) are mostly applied for bone treatment and also for the loss of skeletal disorders. The adsorption, retention, diffusion, and release of (NBPs) in bone are controlled by their affinities to such mineral compounds. Bisphosphonates have a high affinity for Ca2+ and therefore attack bone minerals, where they are internalized by bone-resorbing osteoclasts and inhibit osteoclast function. Nitrogen-containing bisphosphonates (NBPs), including Alendronate, Zolendronate, Risedronic, Ibandronate, and Pamidronate, are functionalized as effective inhibitors of bone resorption diseases. It targets FPPS (osteoclast farnesyl pyrophosphate synthase) to inhibit protein prenylation. Generally, the strong interaction sequence is as follows Alendronate > Risedronic > Pamidronate > Zolendronate > Ibandronate, and this was because of strong electrostatic interactions between amine groups and phosphate ions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
骨骼肌和骨髓癌的控制治疗研究:双磷酸盐与骨结构相互作用的生物物理化学和分子动力学研究
四十多年来,双膦酸盐家族已被应用于骨质疏松症和骨骼转移治疗。这些药物降低了通过HER受体酪氨酸激酶组引导的癌细胞的生存能力。我们讨论了双膦酸盐直接结合并抑制HER激酶。本研究采用iGEMDOCK对接软件实现含氮双膦酸盐与人FPPS及其他靶点的对接。含氮双膦酸盐(NBPs)主要用于骨治疗和骨骼疾病的丧失。NBPs在骨中的吸附、保留、扩散和释放受其对此类矿物化合物的亲和力控制。双磷酸盐对Ca2+有很高的亲和力,因此攻击骨矿物质,在那里它们被骨吸收破骨细胞内化并抑制破骨细胞的功能。含氮双膦酸盐(NBPs),包括阿仑膦酸盐、唑仑膦酸盐、利塞膦酸盐、伊班膦酸盐和帕米膦酸盐,被功能化为骨吸收疾病的有效抑制剂。它以FPPS(破骨细胞法尼基焦磷酸盐合成酶)为靶点,抑制蛋白质烯酰化。一般来说,强相互作用的顺序为:阿仑膦酸盐>利塞膦酸盐>帕米膦酸盐> Zolendronate >伊班膦酸盐,这是由于胺基与磷酸盐离子之间的强静电相互作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.80
自引率
0.00%
发文量
256
期刊介绍: Biointerface Research in Applied Chemistry is an international and interdisciplinary research journal that focuses on all aspects of nanoscience, bioscience and applied chemistry. Submissions are solicited in all topical areas, ranging from basic aspects of the science materials to practical applications of such materials. With 6 issues per year, the first one published on the 15th of February of 2011, Biointerface Research in Applied Chemistry is an open-access journal, making all research results freely available online. The aim is to publish original papers, short communications as well as review papers highlighting interdisciplinary research, the potential applications of the molecules and materials in the bio-field. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible.
期刊最新文献
Editorial. Thirteen Years of Free Publication: From the Optimistic Horizons to Failure and Discreditation Comparative Review of Different Adsorption Techniques Used in Heavy Metals Removal in Water Microstructure and Elastic Properties of Hydroxyapatite/Alumina Nanocomposites Prepared by Mechanical Alloying Technique for Biomedical Applications Investigation on Controlling Therapy of Bone Skeletal and Marrow Cancer: A Biophysical Chemistry and Molecular Dynamic Study of Bisphosphonates Interaction with Bone Structures The Theoretical Description for Amavadin-Ion Electrochemical Determination in Amanita muscaria Mushroom Pulp and Extract by Galvanostatic Conducting Polymer Doping
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1