{"title":"Optimum design of miniature platforms for marginal fields","authors":"Shan Miao, Yuming Liu, D. Yue","doi":"10.12989/OSE.2021.11.2.099","DOIUrl":null,"url":null,"abstract":"Motivated by many recent discoveries of marginal fields in deep water, this paper presents a novel and economical design concept of a minimal floating platform with around 10,000 cubic tons in displacement. The concept characterizes a simple hull geometry and an excellent seakeeping behavior. It incorporates a damping plate at the keel on the basis of a spar-like floater. The design procedure is explained and illustrated. The paper also describes a new design methodology that is capable of efficiently evaluating the seakeeping performance of the platforms with the viscous damping effect included. We integrate this methodology into an Evolutionary Algorithm (EA) to conduct a multi-objective optimization for our novel design. The hull shape is optimized by minimizing the heave motion in waves without sacrificing the cost in construction and installation. Several potential geometric configurations are considered. The optimization results provide a wealth of information that can be used to support practical design decisions.","PeriodicalId":44219,"journal":{"name":"Ocean Systems Engineering-An International Journal","volume":"11 1","pages":"99"},"PeriodicalIF":0.7000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ocean Systems Engineering-An International Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12989/OSE.2021.11.2.099","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, OCEAN","Score":null,"Total":0}
引用次数: 0
Abstract
Motivated by many recent discoveries of marginal fields in deep water, this paper presents a novel and economical design concept of a minimal floating platform with around 10,000 cubic tons in displacement. The concept characterizes a simple hull geometry and an excellent seakeeping behavior. It incorporates a damping plate at the keel on the basis of a spar-like floater. The design procedure is explained and illustrated. The paper also describes a new design methodology that is capable of efficiently evaluating the seakeeping performance of the platforms with the viscous damping effect included. We integrate this methodology into an Evolutionary Algorithm (EA) to conduct a multi-objective optimization for our novel design. The hull shape is optimized by minimizing the heave motion in waves without sacrificing the cost in construction and installation. Several potential geometric configurations are considered. The optimization results provide a wealth of information that can be used to support practical design decisions.
期刊介绍:
The OCEAN SYSTEMS ENGINEERING focuses on the new research and development efforts to advance the understanding of sciences and technologies in ocean systems engineering. The main subject of the journal is the multi-disciplinary engineering of ocean systems. Areas covered by the journal include; * Undersea technologies: AUVs, submersible robot, manned/unmanned submersibles, remotely operated underwater vehicle, sensors, instrumentation, measurement, and ocean observing systems; * Ocean systems technologies: ocean structures and structural systems, design and production, ocean process and plant, fatigue, fracture, reliability and risk analysis, dynamics of ocean structure system, probabilistic dynamics analysis, fluid-structure interaction, ship motion and mooring system, and port engineering; * Ocean hydrodynamics and ocean renewable energy, wave mechanics, buoyancy and stability, sloshing, slamming, and seakeeping; * Multi-physics based engineering analysis, design and testing: underwater explosions and their effects on ocean vehicle systems, equipments, and surface ships, survivability and vulnerability, shock, impact and vibration; * Modeling and simulations; * Underwater acoustics technologies.