A study for validating, rectifying and optimizing the flow in the test section of a circulating water channel

IF 1.2 Q3 ENGINEERING, MARINE Journal of Naval Architecture and Marine Engineering Pub Date : 2021-12-31 DOI:10.3329/jname.v18i2.45982
K. Varghese, Vinay Gopi Nair, Avinashm Godey, P. Kumar
{"title":"A study for validating, rectifying and optimizing the flow in the test section of a circulating water channel","authors":"K. Varghese, Vinay Gopi Nair, Avinashm Godey, P. Kumar","doi":"10.3329/jname.v18i2.45982","DOIUrl":null,"url":null,"abstract":"The Circulation Water Channel (CWC) is an experimental facility available at Indian Maritime University, Visakhapatnam Campus. A study for comparing the flow pattern and velocity in the test section, for different configurations of the CWC, is complex. To study the flow, a physical model of the CWC, with different configurations, should be made, which in overall is a complicated and time-consuming exercise. But this difficulty can be overcome through using Computational Fluid Dynamics (CFD) analysis, as in this study, where a CFD analysis is done using ‘STAR-CCM+’ software. A CFD model of the existing CWC [corresponding to the 1:4 scale setup at IMUV], is first made, and its validity is checked, by comparing the results of the CFD analysis, against those results obtained from the experimental analysis. \nOn successfully validating the results, modifications are suggested for rectifying the disturbance which is present in the test section. The test section is the area in the CWC where experimental activities are carried out. In order to carry out the experiments with a certain degree of accuracy, it is important to have a smooth streamlined flow in the test section. To ensure this, a honeycomb structure is positioned such that the flow enters the test section through the honeycomb, which streamlines the flow. \nOn successfully rectifying the disturbance, studies are carried out to improve the streamlined flow in the test section, for which, different configurations of honeycomb structure are studied. The optimum honeycomb structure, which produces a smooth flow in the test section of a CWC is found out, by conducting analyses for different shapes - i.e. for shapes ranging from rectangular to hexagonal and circular, against different inlet velocities. \nThe present paper sums up the findings of our earlier research, ‘CFD as a Tool to Validate and Modify the Flow in the Test Section of a Circulating Water Channel’, and ‘Study of Flow in the Test Section of a Circulating Water Channel by Varying the Honey Comb Cross Section’, which were published in the conference proceedings of Indian Institute of Technology, Madras, and Indian Maritime University, Visakhapatnam, respectively.","PeriodicalId":55961,"journal":{"name":"Journal of Naval Architecture and Marine Engineering","volume":"1 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2021-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Naval Architecture and Marine Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3329/jname.v18i2.45982","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MARINE","Score":null,"Total":0}
引用次数: 0

Abstract

The Circulation Water Channel (CWC) is an experimental facility available at Indian Maritime University, Visakhapatnam Campus. A study for comparing the flow pattern and velocity in the test section, for different configurations of the CWC, is complex. To study the flow, a physical model of the CWC, with different configurations, should be made, which in overall is a complicated and time-consuming exercise. But this difficulty can be overcome through using Computational Fluid Dynamics (CFD) analysis, as in this study, where a CFD analysis is done using ‘STAR-CCM+’ software. A CFD model of the existing CWC [corresponding to the 1:4 scale setup at IMUV], is first made, and its validity is checked, by comparing the results of the CFD analysis, against those results obtained from the experimental analysis. On successfully validating the results, modifications are suggested for rectifying the disturbance which is present in the test section. The test section is the area in the CWC where experimental activities are carried out. In order to carry out the experiments with a certain degree of accuracy, it is important to have a smooth streamlined flow in the test section. To ensure this, a honeycomb structure is positioned such that the flow enters the test section through the honeycomb, which streamlines the flow. On successfully rectifying the disturbance, studies are carried out to improve the streamlined flow in the test section, for which, different configurations of honeycomb structure are studied. The optimum honeycomb structure, which produces a smooth flow in the test section of a CWC is found out, by conducting analyses for different shapes - i.e. for shapes ranging from rectangular to hexagonal and circular, against different inlet velocities. The present paper sums up the findings of our earlier research, ‘CFD as a Tool to Validate and Modify the Flow in the Test Section of a Circulating Water Channel’, and ‘Study of Flow in the Test Section of a Circulating Water Channel by Varying the Honey Comb Cross Section’, which were published in the conference proceedings of Indian Institute of Technology, Madras, and Indian Maritime University, Visakhapatnam, respectively.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
某循环水通道试验段流量的验证、修正与优化研究
循环水通道(CWC)是印度海事大学维沙卡帕特南校区的一个实验设施。对于不同配置的CWC,比较试验段内的流态和速度是一项复杂的研究。为了研究其流动,需要建立不同构型的化学武器物理模型,这是一项复杂而耗时的工作。但这个困难可以通过使用计算流体动力学(CFD)分析来克服,就像在本研究中一样,CFD分析是使用“STAR-CCM+”软件完成的。首先建立了现有CWC的CFD模型[对应于IMUV的1:4比尺设置],并通过将CFD分析结果与实验分析结果进行比较,验证了其有效性。在成功地验证了结果后,提出了修正建议,以纠正测试段中存在的干扰。试验区是《禁止化学武器公约》中进行实验活动的区域。为了进行具有一定精度的实验,在试验段内保持流畅的流线型流动是很重要的。为了确保这一点,放置了蜂窝结构,使气流通过蜂窝进入测试段,从而使气流流线化。在成功消除干扰的基础上,进行了改善试验段流线型流动的研究,为此研究了不同构型的蜂窝结构。通过对不同形状(即从矩形到六角形和圆形)在不同入口速度下的分析,找到了在CWC测试段产生平滑流动的最佳蜂窝结构。本文总结了我们之前的研究成果,分别发表在马德拉斯印度理工学院和维萨卡帕特南印度海事大学的会议论文集上的“CFD作为验证和修改循环水通道试验段流量的工具”和“通过改变蜂窝截面研究循环水通道试验段流量”。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.50
自引率
5.60%
发文量
0
审稿时长
20 weeks
期刊介绍: TJPRC: Journal of Naval Architecture and Marine Engineering (JNAME) is a peer reviewed journal and it provides a forum for engineers and scientists from a wide range of disciplines to present and discuss various phenomena in the utilization and preservation of ocean environment. Without being limited by the traditional categorization, it is encouraged to present advanced technology development and scientific research, as long as they are aimed for more and better human engagement with ocean environment. Topics include, but not limited to: marine hydrodynamics; structural mechanics; marine propulsion system; design methodology & practice; production technology; system dynamics & control; marine equipment technology; materials science; under-water acoustics; satellite observations; and information technology related to ship and marine systems; ocean energy systems; marine environmental engineering; maritime safety engineering; polar & arctic engineering; coastal & port engineering; aqua-cultural engineering; sub-sea engineering; and specialized water-craft engineering. International Journal of Naval Architecture and Ocean Engineering is published quarterly by the Society of Naval Architects of Korea. In addition to original, full-length, refereed papers, review articles by leading authorities and articulated technical discussions of highly technical interest are also published.
期刊最新文献
Design of thin curved sensor to measure contact slip in fretting experiments Similarity solution of stagnation – spot flow of a micropolar fluid above a flat exponentially elongating penetrable surface with concentration and heat production/absorption Inventory optimization model of deteriorating items with nonlinear ramped type demand function Combined convective and viscous dissipation effects on peristaltic flow of Ellis fluid in non uniform tube A study for validating, rectifying and optimizing the flow in the test section of a circulating water channel
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1