Relative stable interannual variation in plant‒plant pollen transfer rather than the plant‒pollinator network of a subalpine meadow

IF 3 2区 环境科学与生态学 Q2 ECOLOGY Journal of Plant Ecology Pub Date : 2022-10-23 DOI:10.1093/jpe/rtac094
Q. Fang, Shiyun Guo, Tao Zhang, Xiaoxin Tang
{"title":"Relative stable interannual variation in plant‒plant pollen transfer rather than the plant‒pollinator network of a subalpine meadow","authors":"Q. Fang, Shiyun Guo, Tao Zhang, Xiaoxin Tang","doi":"10.1093/jpe/rtac094","DOIUrl":null,"url":null,"abstract":"\n Previous studies have shown that plant–pollinator mutualistic interactions experience highly interannual variation. Given that pollinators often move across multiple plant species, the plant‒plant interactions that take place via heterospecific pollen (HP) transfer may also vary temporally, which could have important implications for floral evolution and community assembly. Here, we evaluated the interannual variation in plant–pollinator networks and plant‒plant heterospecific pollen transfer (HPT) networks of a subalpine meadow community in Southwest China for three consecutive years. The interactions largely varied between years for both network types. The composition of donor-species HP deposited on the plants varied less than did the visit composition of the pollinators, which suggested that HP could be transferred from identical donor species to recipient species through different shared pollinators between years. The plant species were at more similar positions in the HPT network than they were in the plant–pollinator network across years. Moreover, the more generalized plant species in the plant–pollinator network tended to export their pollen grains and more strongly influence HPT. We evaluated the relatively stable structure of the HPT network compared with the plant–pollinator network, which represents an important step in the integration of plant–pollinator and plant‒plant interactions.","PeriodicalId":50085,"journal":{"name":"Journal of Plant Ecology","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2022-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Plant Ecology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/jpe/rtac094","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Previous studies have shown that plant–pollinator mutualistic interactions experience highly interannual variation. Given that pollinators often move across multiple plant species, the plant‒plant interactions that take place via heterospecific pollen (HP) transfer may also vary temporally, which could have important implications for floral evolution and community assembly. Here, we evaluated the interannual variation in plant–pollinator networks and plant‒plant heterospecific pollen transfer (HPT) networks of a subalpine meadow community in Southwest China for three consecutive years. The interactions largely varied between years for both network types. The composition of donor-species HP deposited on the plants varied less than did the visit composition of the pollinators, which suggested that HP could be transferred from identical donor species to recipient species through different shared pollinators between years. The plant species were at more similar positions in the HPT network than they were in the plant–pollinator network across years. Moreover, the more generalized plant species in the plant–pollinator network tended to export their pollen grains and more strongly influence HPT. We evaluated the relatively stable structure of the HPT network compared with the plant–pollinator network, which represents an important step in the integration of plant–pollinator and plant‒plant interactions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
亚高山草甸植物-植物花粉传递而非植物-传粉者网络的相对稳定的年际变化
先前的研究表明,植物-传粉昆虫的互惠相互作用经历了高度的年际变化。考虑到传粉昆虫经常在多种植物物种之间移动,通过异性花粉(HP)转移发生的植物-植物相互作用也可能随时间变化,这可能对花的进化和群落组装产生重要影响。在这里,我们连续三年评估了中国西南亚高山草甸群落的植物-传粉者网络和植物-异源花粉转移(HPT)网络的年际变化。这两种网络类型的交互作用在不同年份有很大差异。附着在植物上的供体物种HP的组成变化小于传粉昆虫的访问组成,这表明HP可以在不同年份之间通过不同的共享传粉昆虫从相同的供体物种转移到受体物种。多年来,这些植物物种在HPT网络中的位置比在植物-传粉昆虫网络中的更相似。此外,植物-传粉者网络中更广泛的植物物种倾向于输出花粉粒,并对HPT产生更强烈的影响。与植物-传粉昆虫网络相比,我们评估了HPT网络相对稳定的结构,这代表了植物-传粉者和植物-植物相互作用整合的重要一步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Plant Ecology
Journal of Plant Ecology 生物-植物科学
CiteScore
4.60
自引率
18.50%
发文量
134
审稿时长
3 months
期刊介绍: Journal of Plant Ecology (JPE) serves as an important medium for ecologists to present research findings and discuss challenging issues in the broad field of plants and their interactions with biotic and abiotic environment. The JPE will cover all aspects of plant ecology, including plant ecophysiology, population ecology, community ecology, ecosystem ecology and landscape ecology as well as conservation ecology, evolutionary ecology, and theoretical ecology.
期刊最新文献
An improved method for edge detection based on neighbor distance for processing hemispheric photography in studying canopy structure and radiative transfer Publication-level analysis of Journal of Plant Ecology during 2018–2022 Effects and driving factors of domestic sewage from different sources on nitrous oxide emissions in a bog Soil hydrological processes as affected by the conversion of natural tropical rainforest to monoculture rubber plantations Effects of arbuscular mycorrhizal fungi on carbon assimilation and ecological stoichiometry of maize (Zea mays) under combined abiotic stresses
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1