G. Cicala, S. Demarchi, Marco Menapace, Leopoldo Annunziata, A. Tacchella
{"title":"A comparison of declarative AI techniques for computer automated design of elevator systems","authors":"G. Cicala, S. Demarchi, Marco Menapace, Leopoldo Annunziata, A. Tacchella","doi":"10.3233/ia-210132","DOIUrl":null,"url":null,"abstract":"Like other custom-built machinery, elevators are charecterized by a design process which includes selection, sizing and placement of components to fit a given configuration, satisfy users’ requirements and adhere to stringent normative regulations. Unlike mass-produced items, the design process needs to be repeated almost from scratch each time a new configuration is considered. Since elevators are still designed mostly manually, project engineers must engage in time-consuming and error-prone activities over and over again, leaving little to be reused from one design to the next. Computer automated design can provide a cost-effective solution as it relieves the project engineer from such burdens. However, it introduces new challenges both in terms of efficiency — the search space for solutions grows exponentially in the number of component choices — and effectiveness — the perceived quality of the final design may not be as good as in the manual process. In this paper we compare three mainstream AI techniques that can provide problem-solving capabilities inside our tool LiftCreate for automated elevator design, namely Genetic Algorithms (GAs), Constraint Programming (CP) and Satisfiability Modulo Theories (SMT). A special-purpose heuristic search technique embedded in LiftCreate provides us with a yardstick to evaluate the solutions obtained with GAs, CP and SMT and to assess their feasibility for practical applications.","PeriodicalId":42055,"journal":{"name":"Intelligenza Artificiale","volume":"16 1","pages":"131-150"},"PeriodicalIF":1.9000,"publicationDate":"2022-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intelligenza Artificiale","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/ia-210132","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Like other custom-built machinery, elevators are charecterized by a design process which includes selection, sizing and placement of components to fit a given configuration, satisfy users’ requirements and adhere to stringent normative regulations. Unlike mass-produced items, the design process needs to be repeated almost from scratch each time a new configuration is considered. Since elevators are still designed mostly manually, project engineers must engage in time-consuming and error-prone activities over and over again, leaving little to be reused from one design to the next. Computer automated design can provide a cost-effective solution as it relieves the project engineer from such burdens. However, it introduces new challenges both in terms of efficiency — the search space for solutions grows exponentially in the number of component choices — and effectiveness — the perceived quality of the final design may not be as good as in the manual process. In this paper we compare three mainstream AI techniques that can provide problem-solving capabilities inside our tool LiftCreate for automated elevator design, namely Genetic Algorithms (GAs), Constraint Programming (CP) and Satisfiability Modulo Theories (SMT). A special-purpose heuristic search technique embedded in LiftCreate provides us with a yardstick to evaluate the solutions obtained with GAs, CP and SMT and to assess their feasibility for practical applications.