Zhiguang Wang, Zhaoyu Wei, Caoyang Yu, Junjun Cao, Baoheng Yao, L. Lian
{"title":"DYNAMIC MODELING AND OPTIMAL CONTROL OF A POSITIVE BUOYANCY DIVING AUTONOMOUS VEHICLE","authors":"Zhiguang Wang, Zhaoyu Wei, Caoyang Yu, Junjun Cao, Baoheng Yao, L. Lian","doi":"10.21278/brod74102","DOIUrl":null,"url":null,"abstract":"The positive buoyancy diving autonomous vehicle combines the features of an Unmanned Surface Vessel (USV) and an Autonomous Underwater Vehicle (AUV) for marine measurement and monitoring. It can also be used to study reasonable and efficient positive buoyancy diving techniques for underwater robots. In order to study the optimization of low power consumption and high efficiency cruise motion of the positive buoyancy diving vehicle, its dynamic modeling has been established. The optimal cruising speed for low energy consumption of the positive buoyancy diving vehicle is determined by numerical simulation. The Linear Quadratic Regulator (LQR) controller is designed to optimize the dynamic error and the actuator energy consumption of the vehicle in order to achieve the optimal fixed depth tracking control of the positive buoyancy diving vehicle. The results demonstrate that the LQR controller has better performance than PID, and the system adjustment time of the LQR controller is reduced by approximately 56% relative to PID. The motion optimization control method proposed can improve the endurance of the positive buoyancy diving vehicle, and has a certain application value.","PeriodicalId":55594,"journal":{"name":"Brodogradnja","volume":null,"pages":null},"PeriodicalIF":3.9000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brodogradnja","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.21278/brod74102","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MARINE","Score":null,"Total":0}
引用次数: 2
Abstract
The positive buoyancy diving autonomous vehicle combines the features of an Unmanned Surface Vessel (USV) and an Autonomous Underwater Vehicle (AUV) for marine measurement and monitoring. It can also be used to study reasonable and efficient positive buoyancy diving techniques for underwater robots. In order to study the optimization of low power consumption and high efficiency cruise motion of the positive buoyancy diving vehicle, its dynamic modeling has been established. The optimal cruising speed for low energy consumption of the positive buoyancy diving vehicle is determined by numerical simulation. The Linear Quadratic Regulator (LQR) controller is designed to optimize the dynamic error and the actuator energy consumption of the vehicle in order to achieve the optimal fixed depth tracking control of the positive buoyancy diving vehicle. The results demonstrate that the LQR controller has better performance than PID, and the system adjustment time of the LQR controller is reduced by approximately 56% relative to PID. The motion optimization control method proposed can improve the endurance of the positive buoyancy diving vehicle, and has a certain application value.
期刊介绍:
The journal is devoted to multidisciplinary researches in the fields of theoretical and experimental naval architecture and oceanology as well as to challenging problems in shipbuilding as well shipping, offshore and related shipbuilding industries worldwide. The aim of the journal is to integrate technical interests in shipbuilding, ocean engineering, sea and ocean shipping, inland navigation and intermodal transportation as well as environmental issues, overall safety, objects for wind, marine and hydrokinetic renewable energy production and sustainable transportation development at seas, oceans and inland waterways in relations to shipbuilding and naval architecture. The journal focuses on hydrodynamics, structures, reliability, materials, construction, design, optimization, production engineering, building and organization of building, project management, repair and maintenance planning, information systems in shipyards, quality assurance as well as outfitting, powering, autonomous marine vehicles, power plants and equipment onboard. Brodogradnja publishes original scientific papers, review papers, preliminary communications and important professional papers relevant in engineering and technology.