{"title":"Vertical distribution and release characteristics of phosphorus forms in the sediments from the river inflow area of Dianchi Lake, China","authors":"W. Yang, Hanran Xiao, Ye Li, D. Miao","doi":"10.1080/09542299.2018.1446766","DOIUrl":null,"url":null,"abstract":"Abstract Columnar sediment samples were collected from five representative river inflow areas of Dianchi Lake, China. The vertical distribution of each form of P were tested. Results showed that the concentration of TP in the sediments from areas A, B, C, D and E in the order of D > B > A > C > E, and the average concentration of D, B, A, C and E were 2991, 2064, 1308, 879, and 759 mg•kg−1, respectively. The concentration of Ex-P, Fe/Al-P, Ca-P and Org-P all decreased with increasing depth. The release of Ex-P was significantly related to TP whereas the Fe/Al-P was not significantly related to TP in the samples from areas polluted by domestic sewage. However, the release of Ex-P and Fe/Al-P were both significantly related to TP in the samples from areas polluted by phosphate mining and phosphate fertilizer application. The results of equilibrium P concentration (EPC0) analysis showed that P in the sediments of areas A, D and E were the source of P in Dianchi Lake, and the P in the sediments of areas B and C were in relative equilibrium with the overlying water.","PeriodicalId":55264,"journal":{"name":"Chemical Speciation and Bioavailability","volume":"30 1","pages":"14 - 22"},"PeriodicalIF":0.0000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/09542299.2018.1446766","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Speciation and Bioavailability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/09542299.2018.1446766","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Chemical Engineering","Score":null,"Total":0}
引用次数: 8
Abstract
Abstract Columnar sediment samples were collected from five representative river inflow areas of Dianchi Lake, China. The vertical distribution of each form of P were tested. Results showed that the concentration of TP in the sediments from areas A, B, C, D and E in the order of D > B > A > C > E, and the average concentration of D, B, A, C and E were 2991, 2064, 1308, 879, and 759 mg•kg−1, respectively. The concentration of Ex-P, Fe/Al-P, Ca-P and Org-P all decreased with increasing depth. The release of Ex-P was significantly related to TP whereas the Fe/Al-P was not significantly related to TP in the samples from areas polluted by domestic sewage. However, the release of Ex-P and Fe/Al-P were both significantly related to TP in the samples from areas polluted by phosphate mining and phosphate fertilizer application. The results of equilibrium P concentration (EPC0) analysis showed that P in the sediments of areas A, D and E were the source of P in Dianchi Lake, and the P in the sediments of areas B and C were in relative equilibrium with the overlying water.
摘要/ Abstract摘要:对滇池5个代表性河流来源区进行柱状沉积物取样。测定了各形态磷的垂直分布。结果表明:A区、B区、C区、D区和E区沉积物中TP的浓度依次为D > B > A > C > E, D、B、A、C和E的平均浓度分别为2991、2064、1308、879和759 mg•kg−1。Ex-P、Fe/Al-P、Ca-P和Org-P浓度均随深度增加而降低。生活污水污染地区样品中Ex-P的释放与TP有显著相关性,而Fe/Al-P与TP无显著相关性。而在磷矿和磷肥污染地区,样品中Ex-P和Fe/Al-P的释放均与TP呈显著相关。平衡磷浓度(EPC0)分析结果表明,A、D、E区沉积物中的磷是滇池磷的来源,B、C区沉积物中的磷与上覆水体处于相对平衡状态。
期刊介绍:
Chemical Speciation & Bioavailability ( CS&B) is a scholarly, peer-reviewed forum for insights on the chemical aspects of occurrence, distribution, transport, transformation, transfer, fate, and effects of substances in the environment and biota, and their impacts on the uptake of the substances by living organisms. Substances of interests include both beneficial and toxic ones, especially nutrients, heavy metals, persistent organic pollutants, and emerging contaminants, such as engineered nanomaterials, as well as pharmaceuticals and personal-care products as pollutants. It is the aim of this Journal to develop an international community of experienced colleagues to promote the research, discussion, review, and spread of information on chemical speciation and bioavailability, which is a topic of interest to researchers in many disciplines, including environmental, chemical, biological, food, medical, toxicology, and health sciences.
Key themes in the scope of the Journal include, but are not limited to, the following “6Ms”:
Methods for speciation analysis and the evaluation of bioavailability, especially the development, validation, and application of novel methods and techniques.
Media that sustain the processes of release, distribution, transformation, and transfer of chemical speciation; of particular interest are emerging contaminants, such as engineered nanomaterials, pharmaceuticals, and personal-care products.
Mobility of substance species in environment and biota, either spatially or temporally.
Matters that influence the chemical speciation and bioavailability, mainly environmentally relevant conditions.
Mechanisms that govern the transport, transformation, transfer, and fate of chemical speciation in the environment, and the biouptake of substances.
Models for the simulation of chemical speciation and bioavailability, and for the prediction of toxicity.
Chemical Speciation & Bioavailability is a fully open access journal. This means all submitted articles will, if accepted, be available for anyone to read, anywhere, at any time. immediately on publication. There are no charges for submission to this journal.