J. Barés, Manuel Cárdenas-Barrantes, D. Cantor, M. Renouf, É. Azéma
{"title":"Softer than soft: Diving into squishy granular matter","authors":"J. Barés, Manuel Cárdenas-Barrantes, D. Cantor, M. Renouf, É. Azéma","doi":"10.4279/pip.140009","DOIUrl":null,"url":null,"abstract":"Softer than soft, squishy granular matter is composed of grains capable of significantly changing their shape (typically a deformation larger than 10%) without tearing or breaking. Because of the difficulty to test these materials experimentally and numerically, such a family of discrete systems remains largely ignored in the granular matter physics field despite being commonly found in nature and industry. Either from a numerical, experimental, or analytical point of view, the study of highly deformable granular matter involves several challenges covering, for instance: (i) the need to include a large diversity of grain rheology, (ii) the need to consider large material deformations, and (iii) analysis of the effects of large body distortion on the global scale. In this article, we propose a thorough definition of these squishy granular systems and we summarize the upcoming challenges in their study.","PeriodicalId":19791,"journal":{"name":"Papers in Physics","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2022-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Papers in Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4279/pip.140009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 5
Abstract
Softer than soft, squishy granular matter is composed of grains capable of significantly changing their shape (typically a deformation larger than 10%) without tearing or breaking. Because of the difficulty to test these materials experimentally and numerically, such a family of discrete systems remains largely ignored in the granular matter physics field despite being commonly found in nature and industry. Either from a numerical, experimental, or analytical point of view, the study of highly deformable granular matter involves several challenges covering, for instance: (i) the need to include a large diversity of grain rheology, (ii) the need to consider large material deformations, and (iii) analysis of the effects of large body distortion on the global scale. In this article, we propose a thorough definition of these squishy granular systems and we summarize the upcoming challenges in their study.
期刊介绍:
Papers in Physics publishes original research in all areas of physics and its interface with other subjects. The scope includes, but is not limited to, physics of particles and fields, condensed matter, relativity and gravitation, nuclear physics, physics of fluids, biophysics, econophysics, chemical physics, statistical mechanics, soft condensed matter, materials science, mathematical physics and general physics. Contributions in the areas of foundations of physics, history of physics and physics education are not considered for publication. Articles published in Papers in Physics contain substantial new results and ideas that advance the state of physics in a non-trivial way. Articles are strictly reviewed by specialists prior to publication. Papers in Physics highlights outstanding articles published in the journal through the Editors'' choice section. Papers in Physics offers two distinct editorial treatments to articles from which authors can choose. In Traditional Review, manuscripts are submitted to anonymous reviewers seeking constructive criticism and editors make a decision on whether publication is appropriate. In Open Review, manuscripts are sent to reviewers. If the paper is considered original and technically sound, the article, the reviewer''s comments and the author''s reply are published alongside the names of all involved. This way, Papers in Physics promotes the open discussion of controversies among specialists that are of help to the reader and to the transparency of the editorial process. Moreover, our reviewers receive their due recognition by publishing a recorded citable report. Papers in Physics publishes Commentaries from the reviewer(s) if major disagreements remain after exchange with the authors or if a different insight proposed is considered valuable for the readers.