P. F. Orte, E. Fernández Lajús, R. P. Di Sisto, E. Wolfram, Anabela Lusi, M. G. Nicora, R. D’Elia, Federico Verstraeten, S. Papandrea, Facundo Carmona
{"title":"Changes in the surface irradiance during the total solar eclipse 2020 in Valcheta, Argentina","authors":"P. F. Orte, E. Fernández Lajús, R. P. Di Sisto, E. Wolfram, Anabela Lusi, M. G. Nicora, R. D’Elia, Federico Verstraeten, S. Papandrea, Facundo Carmona","doi":"10.4279/pip.150002","DOIUrl":null,"url":null,"abstract":"On December 14, 2020, southern South America experienced a total solar eclipse close to the solar noon. The path of totality, about 90 km wide, extended over the continental region from the Chilean west coast to the Argentine east coast, passing through the provinces of Neuquén, Río Negro and the extreme south of Buenos Aires. In order to study the effects on the atmosphere produced by the total eclipse, the Servicio Meteorológico Nacional Argentino (SMN) and Instituto de Investigaciones Científicas y Técnicas para la Defensa (CITEDEF) carried out a surface radiometric monitoring campaign in Valcheta (40.69°S; 66.15°W), Río Negro, Argentina. In this work, we explore the global surface solar irradiance on a horizontal plane (GHI) with the main objective of quantifying the changes in this parameter for cloudy and clear sky atmospheric conditions, combining ground-based measurements and modeling. A solar limb-darkening function was successfully implemented in the calculation of the irradiance at the top of the atmosphere (TOA) during the eclipse. We estimated a significant GHI attenuation of 41 % between the first (C1) and last (C4) contacts of eclipse compared to similar atmospheric conditions without the total eclipse, which represent a daily reduction of 12 %. In terms of irradiation, a reduction of 3360.1 KJ/m2 was calculated.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4279/pip.150002","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
On December 14, 2020, southern South America experienced a total solar eclipse close to the solar noon. The path of totality, about 90 km wide, extended over the continental region from the Chilean west coast to the Argentine east coast, passing through the provinces of Neuquén, Río Negro and the extreme south of Buenos Aires. In order to study the effects on the atmosphere produced by the total eclipse, the Servicio Meteorológico Nacional Argentino (SMN) and Instituto de Investigaciones Científicas y Técnicas para la Defensa (CITEDEF) carried out a surface radiometric monitoring campaign in Valcheta (40.69°S; 66.15°W), Río Negro, Argentina. In this work, we explore the global surface solar irradiance on a horizontal plane (GHI) with the main objective of quantifying the changes in this parameter for cloudy and clear sky atmospheric conditions, combining ground-based measurements and modeling. A solar limb-darkening function was successfully implemented in the calculation of the irradiance at the top of the atmosphere (TOA) during the eclipse. We estimated a significant GHI attenuation of 41 % between the first (C1) and last (C4) contacts of eclipse compared to similar atmospheric conditions without the total eclipse, which represent a daily reduction of 12 %. In terms of irradiation, a reduction of 3360.1 KJ/m2 was calculated.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.