INVESTIGATION OF SLOSHING IN THE PRISMATIC TANK WITH VERTICAL AND T-SHAPE BAFFLES

IF 3.9 4区 工程技术 Q1 ENGINEERING, MARINE Brodogradnja Pub Date : 2022-04-01 DOI:10.21278/brod73203
A. Trimulyono, H. Atthariq, D. Chrismianto, Samuel Samuel
{"title":"INVESTIGATION OF SLOSHING IN THE PRISMATIC TANK WITH VERTICAL AND T-SHAPE BAFFLES","authors":"A. Trimulyono, H. Atthariq, D. Chrismianto, Samuel Samuel","doi":"10.21278/brod73203","DOIUrl":null,"url":null,"abstract":"The demand for liquid carriers, such as liquefied natural gas (LNG), has increased in recent years. One of the most common types of LNG carriers is the membrane type, which is often built by a shipyard with a prismatic tank shape. This carrier is commonly known for its effective ways to mitigate sloshing using a baffle. Therefore, this study was performed to evaluate sloshing in a prismatic tank using vertical and T-shape baffles. The sloshing was conducted with 25% and 50% filling ratios because it deals with the nonlinear free-surface flow. Furthermore, the smoothed particle hydrodynamics (SPH) was used to overcome sloshing with ratio of a baffle and water depth is 0.9. A comparison was made for the dynamic pressure with the experiment. The results show that SPH has an acceptable accuracy for dynamic and hydrostatic pressures. Baffle installation significantly decreases the wave height, dynamic pressure and hydrodynamic force.","PeriodicalId":55594,"journal":{"name":"Brodogradnja","volume":"1 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brodogradnja","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.21278/brod73203","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MARINE","Score":null,"Total":0}
引用次数: 6

Abstract

The demand for liquid carriers, such as liquefied natural gas (LNG), has increased in recent years. One of the most common types of LNG carriers is the membrane type, which is often built by a shipyard with a prismatic tank shape. This carrier is commonly known for its effective ways to mitigate sloshing using a baffle. Therefore, this study was performed to evaluate sloshing in a prismatic tank using vertical and T-shape baffles. The sloshing was conducted with 25% and 50% filling ratios because it deals with the nonlinear free-surface flow. Furthermore, the smoothed particle hydrodynamics (SPH) was used to overcome sloshing with ratio of a baffle and water depth is 0.9. A comparison was made for the dynamic pressure with the experiment. The results show that SPH has an acceptable accuracy for dynamic and hydrostatic pressures. Baffle installation significantly decreases the wave height, dynamic pressure and hydrodynamic force.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
竖挡板和t形挡板圆柱槽内晃动的研究
近年来,对液化天然气(LNG)等液体载体的需求有所增加。最常见的LNG运输船类型之一是膜式运输船,通常由船厂建造,具有棱柱形罐形。这种载体通常以其使用挡板的有效方法来减轻晃动而闻名。因此,本研究使用垂直和t形挡板来评估棱柱形水箱中的晃动。由于处理的是非线性自由表面流动,所以在填充率为25%和50%的情况下进行了晃动。此外,在挡板与水深比为0.9时,采用光滑颗粒流体力学(SPH)克服了晃动。并与实验结果进行了比较。结果表明,SPH对动、静水压力具有可接受的精度。挡板的安装显著降低了浪高、动压力和水动力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Brodogradnja
Brodogradnja ENGINEERING, MARINE-
CiteScore
4.30
自引率
38.90%
发文量
33
审稿时长
>12 weeks
期刊介绍: The journal is devoted to multidisciplinary researches in the fields of theoretical and experimental naval architecture and oceanology as well as to challenging problems in shipbuilding as well shipping, offshore and related shipbuilding industries worldwide. The aim of the journal is to integrate technical interests in shipbuilding, ocean engineering, sea and ocean shipping, inland navigation and intermodal transportation as well as environmental issues, overall safety, objects for wind, marine and hydrokinetic renewable energy production and sustainable transportation development at seas, oceans and inland waterways in relations to shipbuilding and naval architecture. The journal focuses on hydrodynamics, structures, reliability, materials, construction, design, optimization, production engineering, building and organization of building, project management, repair and maintenance planning, information systems in shipyards, quality assurance as well as outfitting, powering, autonomous marine vehicles, power plants and equipment onboard. Brodogradnja publishes original scientific papers, review papers, preliminary communications and important professional papers relevant in engineering and technology.
期刊最新文献
Probabilistic evaluation of dynamic positioning operability with a Quasi-Monte Carlo approach Influence of scale effect on flow field offset for ships in confined waters On the propeller wake evolution using large eddy simulations and physics-informed space-time decomposition Small Modular AUV Based on 3D Printing Technology: Design, Implementation and Experimental Validation Analysis of damage to ship personnel in different seated postures by near-field underwater explosions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1