Pure polylysine-based foamy scaffolds and their interaction with MC3T3-E1 cells and osteogenesis

IF 3.9 3区 医学 Q2 ENGINEERING, BIOMEDICAL Biomedical materials Pub Date : 2019-11-28 DOI:10.1088/1748-605X/ab5cfc
Ning Cui, Kai Han, M. Li, Jinlei Wang, Junmin Qian
{"title":"Pure polylysine-based foamy scaffolds and their interaction with MC3T3-E1 cells and osteogenesis","authors":"Ning Cui, Kai Han, M. Li, Jinlei Wang, Junmin Qian","doi":"10.1088/1748-605X/ab5cfc","DOIUrl":null,"url":null,"abstract":"Polypeptide-derived copolymers have widely been exploited for drug/gene delivery due to their pendant functional groups and non-toxic degradation products. However, fabrication of polypeptide-based scaffolds for tissue engineering has seldom been reported. In this study, foamy poly(Nε-benzyl formateoxycarbonyl-L-Lysine) (PZL) and poly(Nε-benzyl formateoxycarbonyl-L-lysine-co-L-phenylalanine) (PZLP) scaffolds were successfully prepared by a combination of ring-opening polymerization of α-amino acid N-carboxyanhydride and negative porous NaCl templating approach. The physicochemical properties of these scaffolds including glass transition temperature, contact angle, compression modulus and degradation behavior were characterized. Both in vitro and in vivo biocompatibility of the scaffolds were evaluated by MC3T3-E1 cell culture and SD subcutaneous model, respectively. The results from live-dead staining, MTT and ALP activity assays indicated that PZL scaffolds were more conducive to the adhesion, proliferation and osteoblastic differentiation of MC3T3-E1 cells compared to PZLP scaffolds in the initial culture period due to their specific surface properties. While porous structure rather than surface properties of scaffolds played a decisive role in the later stage of cell culture. The results of in vivo studies including H&E, Masson’s trichrome and CD34 staining further demonstrated that PZL scaffolds supported the ingrowth of microvessels than PZLP scaffolds due to their surface property difference. Collectively, PZL scaffolds displayed good biocompatibility and could be a promising candidate for tissue engineering application.","PeriodicalId":9016,"journal":{"name":"Biomedical materials","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2019-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1088/1748-605X/ab5cfc","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1748-605X/ab5cfc","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 3

Abstract

Polypeptide-derived copolymers have widely been exploited for drug/gene delivery due to their pendant functional groups and non-toxic degradation products. However, fabrication of polypeptide-based scaffolds for tissue engineering has seldom been reported. In this study, foamy poly(Nε-benzyl formateoxycarbonyl-L-Lysine) (PZL) and poly(Nε-benzyl formateoxycarbonyl-L-lysine-co-L-phenylalanine) (PZLP) scaffolds were successfully prepared by a combination of ring-opening polymerization of α-amino acid N-carboxyanhydride and negative porous NaCl templating approach. The physicochemical properties of these scaffolds including glass transition temperature, contact angle, compression modulus and degradation behavior were characterized. Both in vitro and in vivo biocompatibility of the scaffolds were evaluated by MC3T3-E1 cell culture and SD subcutaneous model, respectively. The results from live-dead staining, MTT and ALP activity assays indicated that PZL scaffolds were more conducive to the adhesion, proliferation and osteoblastic differentiation of MC3T3-E1 cells compared to PZLP scaffolds in the initial culture period due to their specific surface properties. While porous structure rather than surface properties of scaffolds played a decisive role in the later stage of cell culture. The results of in vivo studies including H&E, Masson’s trichrome and CD34 staining further demonstrated that PZL scaffolds supported the ingrowth of microvessels than PZLP scaffolds due to their surface property difference. Collectively, PZL scaffolds displayed good biocompatibility and could be a promising candidate for tissue engineering application.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
纯聚赖氨酸泡沫支架及其与MC3T3-E1细胞和成骨的相互作用
多肽衍生的共聚物由于其侧官能团和无毒降解产物而被广泛用于药物/基因递送。然而,用于组织工程的多肽基支架的制备很少报道。本研究采用α-氨基酸N-羧酸酐开环聚合和负孔NaCl模板法,成功制备了泡沫状聚(Nε-苄基甲氧羰基-L-赖氨酸)(PZL)和聚(Nμ-苄基甲氧化羰基-L-赖氨酸-co-L-苯丙氨酸)(PZLP)支架。表征了这些支架的物理化学性质,包括玻璃化转变温度、接触角、压缩模量和降解行为。分别通过MC3T3-E1细胞培养和SD皮下模型评价支架的体外和体内生物相容性。活-死染色、MTT和ALP活性测定结果表明,在初始培养期,与PZLP支架相比,PZL支架由于其特定的表面性质,更有利于MC3T3-E1细胞的粘附、增殖和成骨分化。而支架的多孔结构而非表面性质在细胞培养的后期起着决定性作用。包括H&E、Masson三色染色和CD34染色在内的体内研究结果进一步表明,由于表面性质的差异,PZL支架比PZLP支架支持微血管的向内生长。总之,PZL支架显示出良好的生物相容性,有望成为组织工程应用的候选材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biomedical materials
Biomedical materials 工程技术-材料科学:生物材料
CiteScore
6.70
自引率
7.50%
发文量
294
审稿时长
3 months
期刊介绍: The goal of the journal is to publish original research findings and critical reviews that contribute to our knowledge about the composition, properties, and performance of materials for all applications relevant to human healthcare. Typical areas of interest include (but are not limited to): -Synthesis/characterization of biomedical materials- Nature-inspired synthesis/biomineralization of biomedical materials- In vitro/in vivo performance of biomedical materials- Biofabrication technologies/applications: 3D bioprinting, bioink development, bioassembly & biopatterning- Microfluidic systems (including disease models): fabrication, testing & translational applications- Tissue engineering/regenerative medicine- Interaction of molecules/cells with materials- Effects of biomaterials on stem cell behaviour- Growth factors/genes/cells incorporated into biomedical materials- Biophysical cues/biocompatibility pathways in biomedical materials performance- Clinical applications of biomedical materials for cell therapies in disease (cancer etc)- Nanomedicine, nanotoxicology and nanopathology- Pharmacokinetic considerations in drug delivery systems- Risks of contrast media in imaging systems- Biosafety aspects of gene delivery agents- Preclinical and clinical performance of implantable biomedical materials- Translational and regulatory matters
期刊最新文献
A low-swelling alginate hydrogel with antibacterial hemostatic and radical scavenging properties for open wound healing. Evaluation of properties for Carbothane™ 3575A-based electrospun vascular grafts in vitro and in vivo. Migration and retention of human osteosarcoma cells in bioceramic graft with open channel architecture designed for bone tissue engineering. Enhancement of induction heating capability of bioactive SiO2–CaO–Na2O–P2O5 glass-ceramics by selective substitution with magnetite nanoparticles Antiproliferative efficacy and mechanism of action of garlic phytochemicals-functionalized gold nanoparticles in triple-negative breast cancer cells
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1