How a Household Survived a Natural Hazard-Triggered Blackout with Photovoltaic and Battery Energy System: A Report of 2018 Hokkaido Eastern Iburi Earthquake in Japan
{"title":"How a Household Survived a Natural Hazard-Triggered Blackout with Photovoltaic and Battery Energy System: A Report of 2018 Hokkaido Eastern Iburi Earthquake in Japan","authors":"Hitomu Kotani, K. Nakano","doi":"10.20965/jdr.2023.p0280","DOIUrl":null,"url":null,"abstract":"Energy-generating and storage systems, such as photovoltaic (PV) panels and energy storage batteries in homes, are becoming increasingly popular in the context of decarbonization. The systems are also expected to increase household resilience to natural hazard-triggered blackouts. However, how these systems contribute to the use of electrical appliances in households in actual cases is not sufficiently known. Therefore, this report aims to describe the activities that a household with an energy-generating and storage system could undertake during a natural hazard-triggered blackout. We focused on the blackout triggered by the 2018 Hokkaido Eastern Iburi Earthquake (approximately 2.95 million households lost power) and conducted an interview with a household living in a detached all-electric house with a PV and battery system. The results showed that the household lived without inconveniences during the blackout due to the power supply from the installed system, despite the weather. They charged cell phones and used a television, refrigerator, microwave oven, cooking heater, and bath. Moreover, the household’s electricity was also supplied to other households. These results clarified the actual benefit of enhancing household and community resilience of the systems. The results will aid household decision-making for the installation and governmental consideration of subsidies.","PeriodicalId":46831,"journal":{"name":"Journal of Disaster Research","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Disaster Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20965/jdr.2023.p0280","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1
Abstract
Energy-generating and storage systems, such as photovoltaic (PV) panels and energy storage batteries in homes, are becoming increasingly popular in the context of decarbonization. The systems are also expected to increase household resilience to natural hazard-triggered blackouts. However, how these systems contribute to the use of electrical appliances in households in actual cases is not sufficiently known. Therefore, this report aims to describe the activities that a household with an energy-generating and storage system could undertake during a natural hazard-triggered blackout. We focused on the blackout triggered by the 2018 Hokkaido Eastern Iburi Earthquake (approximately 2.95 million households lost power) and conducted an interview with a household living in a detached all-electric house with a PV and battery system. The results showed that the household lived without inconveniences during the blackout due to the power supply from the installed system, despite the weather. They charged cell phones and used a television, refrigerator, microwave oven, cooking heater, and bath. Moreover, the household’s electricity was also supplied to other households. These results clarified the actual benefit of enhancing household and community resilience of the systems. The results will aid household decision-making for the installation and governmental consideration of subsidies.