Semantic Hashing for Fast Solar Magnetogram Retrieval

IF 3.3 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Journal of Artificial Intelligence and Soft Computing Research Pub Date : 2022-10-01 DOI:10.2478/jaiscr-2022-0020
Rafał Grycuk, R. Scherer, A. Marchlewska, Christian Napoli
{"title":"Semantic Hashing for Fast Solar Magnetogram Retrieval","authors":"Rafał Grycuk, R. Scherer, A. Marchlewska, Christian Napoli","doi":"10.2478/jaiscr-2022-0020","DOIUrl":null,"url":null,"abstract":"Abstract We propose a method for content-based retrieving solar magnetograms. We use the SDO Helioseismic and Magnetic Imager output collected with SunPy PyTorch libraries. We create a mathematical representation of the magnetic field regions of the Sun in the form of a vector. Thanks to this solution we can compare short vectors instead of comparing full-disk images. In order to decrease the retrieval time, we used a fully-connected autoencoder, which reduced the 256-element descriptor to a 32-element semantic hash. The performed experiments and comparisons proved the efficiency of the proposed approach. Our approach has the highest precision value in comparison with other state-of-the-art methods. The presented method can be used not only for solar image retrieval but also for classification tasks.","PeriodicalId":48494,"journal":{"name":"Journal of Artificial Intelligence and Soft Computing Research","volume":"12 1","pages":"299 - 306"},"PeriodicalIF":3.3000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Artificial Intelligence and Soft Computing Research","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.2478/jaiscr-2022-0020","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 2

Abstract

Abstract We propose a method for content-based retrieving solar magnetograms. We use the SDO Helioseismic and Magnetic Imager output collected with SunPy PyTorch libraries. We create a mathematical representation of the magnetic field regions of the Sun in the form of a vector. Thanks to this solution we can compare short vectors instead of comparing full-disk images. In order to decrease the retrieval time, we used a fully-connected autoencoder, which reduced the 256-element descriptor to a 32-element semantic hash. The performed experiments and comparisons proved the efficiency of the proposed approach. Our approach has the highest precision value in comparison with other state-of-the-art methods. The presented method can be used not only for solar image retrieval but also for classification tasks.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于快速太阳磁图检索的语义哈希
摘要我们提出了一种基于内容的太阳磁图检索方法。我们使用SunPyPyTorch库收集的SDO太阳地震和磁成像仪输出。我们以矢量的形式创建了太阳磁场区域的数学表示。多亏了这个解决方案,我们可以比较短矢量,而不是比较全磁盘图像。为了减少检索时间,我们使用了一个完全连接的自动编码器,它将256元素的描述符简化为32元素的语义哈希。实验和比较证明了该方法的有效性。与其他最先进的方法相比,我们的方法具有最高的精度值。所提出的方法不仅可以用于太阳图像检索,还可以用于分类任务。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Artificial Intelligence and Soft Computing Research
Journal of Artificial Intelligence and Soft Computing Research COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-
CiteScore
7.00
自引率
25.00%
发文量
10
审稿时长
24 weeks
期刊介绍: Journal of Artificial Intelligence and Soft Computing Research (available also at Sciendo (De Gruyter)) is a dynamically developing international journal focused on the latest scientific results and methods constituting traditional artificial intelligence methods and soft computing techniques. Our goal is to bring together scientists representing both approaches and various research communities.
期刊最新文献
Bending Path Understanding Based on Angle Projections in Field Environments Self-Organized Operational Neural Networks for The Detection of Atrial Fibrillation Interpreting Convolutional Layers in DNN Model Based on Time–Frequency Representation of Emotional Speech A Few-Shot Learning Approach for Covid-19 Diagnosis Using Quasi-Configured Topological Spaces Metrics for Assessing Generalization of Deep Reinforcement Learning in Parameterized Environments
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1