Gabriel Vigliensoni, Louis McCallum, Esteban Maestre, R. Fiebrink
{"title":"Contemporary music genre rhythm generation with machine learning","authors":"Gabriel Vigliensoni, Louis McCallum, Esteban Maestre, R. Fiebrink","doi":"10.5920/jcms.902","DOIUrl":null,"url":null,"abstract":"In this article, we present research on customizing a variational autoencoder (VAE) neural network to learn models and play with musical rhythms encoded within a latent space. The system uses a data structure that is capable of encoding rhythms in simple and compound meter and can learn models from little training data. To facilitate the exploration of models, we implemented a visualizer that relies on the dynamic nature of the pulsing rhythmic patterns. To test our system in real-life musical practice, we collected small-scale datasets of contemporary music genre rhythms and trained models with them. We found that the non-linearities of the learned latent spaces coupled with tactile interfaces to interact with the models were very expressive and lead to unexpected places in composition and live performance musical settings. A music album was recorded and it was premiered at a major music festival using the VAE latent space on stage.","PeriodicalId":52272,"journal":{"name":"Journal of Creative Music Systems","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Creative Music Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5920/jcms.902","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Arts and Humanities","Score":null,"Total":0}
引用次数: 0
Abstract
In this article, we present research on customizing a variational autoencoder (VAE) neural network to learn models and play with musical rhythms encoded within a latent space. The system uses a data structure that is capable of encoding rhythms in simple and compound meter and can learn models from little training data. To facilitate the exploration of models, we implemented a visualizer that relies on the dynamic nature of the pulsing rhythmic patterns. To test our system in real-life musical practice, we collected small-scale datasets of contemporary music genre rhythms and trained models with them. We found that the non-linearities of the learned latent spaces coupled with tactile interfaces to interact with the models were very expressive and lead to unexpected places in composition and live performance musical settings. A music album was recorded and it was premiered at a major music festival using the VAE latent space on stage.