Oktoechos Classification and Generation of Liturgical Music using Deep Learning Frameworks

Q2 Arts and Humanities Journal of Creative Music Systems Pub Date : 2023-07-10 DOI:10.5920/jcms.1014
R. Rajan, Varsha Shiburaj, Amlu Anna Joshy
{"title":"Oktoechos Classification and Generation of Liturgical Music using Deep Learning Frameworks","authors":"R. Rajan, Varsha Shiburaj, Amlu Anna Joshy","doi":"10.5920/jcms.1014","DOIUrl":null,"url":null,"abstract":"An important feature of the music repertoire of the Syrian tradition is the system of classifying melodies into eight tunes,  called ’oktoe\\={c}hos’.  In oktoe\\={c}hos tradition, liturgical hymns are sung in eight modes or eight colours (known as eight ’niram’ in Indian tradition). In this paper, recurrent neural network (RNN) models are  used for  oktoe\\={c}hos genre classification with the help of musical texture features (MTF) and i-vectors.The performance of the proposed approaches is evaluated using a newly created corpus of liturgical music in the South Indian language, Malayalam. Long short-term memory (LSTM)-based and gated recurrent unit(GRU)-based experiments report the average classification accuracy of  83.76\\%  and 77.77\\%, respectively, with a significant margin over the i-vector-DNN framework.   The experiments demonstrate the potential of RNN models in learning temporal information through MTF in recognizing eight modes of oktoe\\={c}hos system. Furthermore, since the Greek liturgy and Gregorian chant also share similar musical traits with Syrian tradition, the musicological insights observed can potentially be applied to those traditions. Generation of oktoe\\={c}hos genre music style has also been discussed using an encoder-decoder framework. The quality of the generated files is evaluated using a  perception test.","PeriodicalId":52272,"journal":{"name":"Journal of Creative Music Systems","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Creative Music Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5920/jcms.1014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Arts and Humanities","Score":null,"Total":0}
引用次数: 0

Abstract

An important feature of the music repertoire of the Syrian tradition is the system of classifying melodies into eight tunes,  called ’oktoe\={c}hos’.  In oktoe\={c}hos tradition, liturgical hymns are sung in eight modes or eight colours (known as eight ’niram’ in Indian tradition). In this paper, recurrent neural network (RNN) models are  used for  oktoe\={c}hos genre classification with the help of musical texture features (MTF) and i-vectors.The performance of the proposed approaches is evaluated using a newly created corpus of liturgical music in the South Indian language, Malayalam. Long short-term memory (LSTM)-based and gated recurrent unit(GRU)-based experiments report the average classification accuracy of  83.76\%  and 77.77\%, respectively, with a significant margin over the i-vector-DNN framework.   The experiments demonstrate the potential of RNN models in learning temporal information through MTF in recognizing eight modes of oktoe\={c}hos system. Furthermore, since the Greek liturgy and Gregorian chant also share similar musical traits with Syrian tradition, the musicological insights observed can potentially be applied to those traditions. Generation of oktoe\={c}hos genre music style has also been discussed using an encoder-decoder framework. The quality of the generated files is evaluated using a  perception test.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于深度学习框架的礼仪音乐分类与生成
叙利亚传统音乐曲目的一个重要特点是将旋律分为八个曲调,称为“oktoe”\={c}hos”。在oktoe\={c}hos传统上,礼拜赞美诗有八种模式或八种颜色(在印度传统中被称为八种“niram”)。本文将递归神经网络(RNN)模型用于oktoe\={c}hos借助音乐纹理特征(MTF)和i-vectors进行流派分类。使用新创建的南印度语马拉雅拉姆语礼拜音乐语料库来评估所提出方法的性能。基于长短期记忆(LSTM)和基于门控递归单元(GRU)的实验报告的平均分类准确率分别为83.76%和77.77%,与i-vector-DNN框架相比有显著差距。实验证明了RNN模型在识别八种oktoe模式时通过MTF学习时间信息的潜力\={c}hos系统此外,由于希腊礼拜仪式和格里高利圣歌也与叙利亚传统具有相似的音乐特征,所观察到的音乐学见解可能适用于这些传统。秋葵的生成\={c}hos流派音乐风格也已经使用编码器-解码器框架进行了讨论。使用感知测试来评估生成的文件的质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Creative Music Systems
Journal of Creative Music Systems Arts and Humanities-Music
CiteScore
1.20
自引率
0.00%
发文量
8
审稿时长
12 weeks
期刊最新文献
Title Pending 1311 Oktoechos Classification and Generation of Liturgical Music using Deep Learning Frameworks Editorial: JCMS Special Issue of the first Conference on AI Music Creativity Contemporary music genre rhythm generation with machine learning Deep Music Information Dynamics Novel Framework for Reduced Neural-Network Music Representation with Applications to Midi and Audio Analysis and Improvisation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1